Unit 9 Day 3 Notes on Multiplication and Division Two rules: $\sqrt{ab} = \sqrt{a \cdot b}$ $\sqrt{a} = \sqrt{a}$ Let's try Multiplying: $\sqrt{6} \cdot \sqrt{10} = \sqrt{60}$ $= \sqrt{4}\sqrt{15}$ What does it mean to 'simplify' when it comes to radii	Examples: $ \begin{array}{l} 9.3 = \sqrt{9} \cdot \sqrt{3} \\ and \\ \sqrt{25} = \sqrt{25} \\ \sqrt{25} = \sqrt{25} \\ \sqrt{32} \cdot \sqrt{32} \cdot \sqrt{32} \cdot \sqrt{5} \cdot 2 \cdot \sqrt{64} \times \sqrt{5} \\ 2 \sqrt{64} \cdot \sqrt{5} \cdot \sqrt{5} \cdot \sqrt{5} \cdot \sqrt{5} \\ 2 \cdot 8 \cdot \times \sqrt{35} \cdot \sqrt{5} \cdot \sqrt{5} \cdot \sqrt{5} \\ \sqrt{16} \times \sqrt{5} \cdot \sqrt{5} \cdot \sqrt{5} \cdot \sqrt{5} \\ \end{array} $
Rule	What it looks like
1) You must have the smallest # possible under the radical	J22 done! (can't divide by any perfect
	√20 → √4√5 → 2√5 done!
2) You may NOT have a radical in the denominator	5 V3+ Canit leave it T3+ this way (see below)
3) You may NOT have like radical factors in the numerator and denominator of a fraction	$\frac{121}{5\sqrt{3}} = \frac{17\sqrt{3}}{5\sqrt{3}} = \frac{17}{5} \text{ done!}$

multiply num. and denom by what you $\frac{5}{\sqrt{8}} \cdot \sqrt{8} = \frac{5\sqrt{8}}{8} = \frac{5\sqrt{4}\sqrt{2}}{8} = \frac{5\sqrt{2}}{8} = \frac{5\sqrt{2}\sqrt{2}}{8}$ How to we "get rid of" the radical in the denominator? This process is called Rationalizing the Denominator. $\frac{21}{\sqrt{3}}, \sqrt{3} = \frac{21\sqrt{3}}{3} = 7\sqrt{3}$ $=\frac{10\sqrt{2}}{8}=\frac{5\sqrt{2}}{4}$ Let's try Dividing: $\frac{\sqrt{18x^2}}{\sqrt{2x}} = \sqrt{9x} = \sqrt{9}\sqrt{x} = 3\sqrt{x}$

 $\frac{5\sqrt{3}}{10\sqrt{15}} = \frac{1\sqrt{1}}{2\sqrt{5}} = \frac{1}{2\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{15}{10}$