Unit 9 Day 3 Notes on Multiplication and Division of Radicals

Two rules:

$$
\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}
$$

and

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

Let's try Multiplying:

$$
\begin{aligned}
\sqrt{6} \cdot \sqrt{10} & =\sqrt{60} \\
& =\sqrt{4} \sqrt{15} \\
& =2 \sqrt{15}
\end{aligned}
$$

Examples:

$$
\sqrt{\text { Examples: }}=\sqrt{9} \cdot \sqrt{3} \text { and } \begin{gathered}
\text { could kelp }
\end{gathered}
$$

$$
\sqrt{\frac{25}{3}}=\frac{\sqrt{25}}{\sqrt{3}}\left\{\begin{array}{l}
\text { could } \\
\text { gong to } \\
\text { simplify these }
\end{array}\right.
$$

$$
2 \sqrt{2 x^{5} y^{2}} \cdot \sqrt{32 x y^{5}}=2 \sqrt{64 x^{6} y^{7}}
$$

$$
\begin{aligned}
& =2 \sqrt{64} x^{6} y \\
& 2 \sqrt{64} \sqrt{x^{6}} \sqrt{y^{6}} \sqrt{y} \\
& 2 \cdot 8 \cdot x^{3} \cdot y^{3} \cdot \sqrt{y}
\end{aligned}
$$

What does it mean to 'simplify' when it comes to radical expressions?

$$
16 x^{3} y^{3} \sqrt{y}
$$

How to we "get rid of" the radical in the denominator?
This process is called Rationalizing the Denominator.

$$
\frac{21}{\sqrt{3}} \cdot \sqrt{3}=\frac{21 \sqrt{3}}{3}=7 \sqrt{3}
$$

multiply num. and denom by what you want to eliminate

$$
\begin{aligned}
\frac{5}{\sqrt{8}} \cdot \sqrt{8}=\frac{5 \sqrt{8}}{8} & =\frac{5 \sqrt{4 \sqrt{2}}}{8}=\frac{5 \cdot 2 \cdot \sqrt{2}}{8} \\
& =\frac{10 \sqrt{2}}{8}=\frac{5 \sqrt{2}}{4}
\end{aligned}
$$

Let's try Dividing:

$$
\begin{aligned}
& \left.\frac{5 \sqrt{3}}{10 \sqrt{15}}=\frac{1 \sqrt{1}}{2 \sqrt{5}}=\frac{1}{2 \sqrt{5} \cdot \sqrt{5}}=\frac{\sqrt{5}}{10} .\right]
\end{aligned}
$$

$$
\frac{\sqrt{18 x^{2}}}{\sqrt{2 x}}=\sqrt{9 x}=\sqrt{9} \sqrt{x}=3 \sqrt{x}
$$

