Unit 9 Day 1 Notes on Simplifying Radicals
Radical - the generic name for square roots, cube roots, $4^{\text {th }}$ roots, etc.
The process of simplifying radicals is a hold-over from before handheld calculators. It does help to organize us a bit, but also to know where on a number line a number falls (number sense). This topic still shows up on standardized tests and so we will need to show you.

Let's get started:

One more time - a refresher on the difference between $x^{2}=9$ and $x=\sqrt{9}$

$$
\begin{aligned}
& \text { what squared is } 9 \text { ? } \\
& \pm \begin{array}{l}
\pm 3
\end{array} \\
& \quad \begin{array}{l}
\text { (principal root) }
\end{array} \\
& \\
&
\end{aligned}
$$

Now, why is the $\sqrt{9}=3$?
Because $\sqrt{9}=\frac{\sqrt{3 \cdot 3}}{\sqrt{3^{2}}}=3$, right? And what about $\sqrt{16} ? \sqrt{16}=\sqrt{\sqrt{4 \cdot 4}}=4$.

$$
\sqrt{10 \cdot 10}=10
$$

So, for every PAIR under the square root, you get ONE outside.

$$
\begin{aligned}
& \text { Try some: } \\
& \sqrt{5 \cdot 5 \cdot 5 \cdot 5}=\sqrt{\underline{5}^{2} \cdot \underline{5}^{2}}=5 \cdot 5=25
\end{aligned}
$$

New rule for $\sqrt{:} \sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}$
So, really, we have two options

Prime factor

$$
\begin{aligned}
\sqrt{27}=\sqrt{3 \cdot 3 \cdot 3} & \left.=\sqrt{3^{2} \cdot(3}\right)^{\text {stan }} \\
& =3^{3} \sqrt{3}
\end{aligned}
$$

vs
vs
look for perfect squares

$$
\begin{aligned}
& \begin{aligned}
\sqrt{27}=\sqrt{9 \cdot 3} & =\sqrt{9} \cdot \sqrt{3} \\
& =3 \sqrt{3}
\end{aligned}
\end{aligned}
$$

Notice the pattern!

$$
\begin{array}{ll}
\sqrt[2]{3^{4}}=\sqrt{\frac{3 \cdot 3 \cdot 3 \cdot 3}{}}=3 \cdot 3=3^{2} & \sqrt[2]{3^{18}}=3^{9} \\
\sqrt{\frac{3^{2} \cdot 3^{2}}{}} & \\
\sqrt[2]{3^{8}}=\sqrt{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 7 \cdot 3 \cdot 3}=3 \cdot 3 \cdot 3 \cdot 3=3^{4} & \sqrt{3^{100}}=3^{50}
\end{array}
$$

