Unit 8 Day 18 HW Quadratics Study Guide

Name:

Problems marked with ** indicate you MAY use a calculator

(\#1-2) draw an accurate graph (with at least five key points) and find the following:

1) $y=-x^{2}+2 x+3$

Axis of Symmetry: $x=1 \quad x=\frac{-2}{2(-1)}=1$
Vertex: $(1,4) \quad$ MAX or MIN
Vertex: $(1,4)$ MAX or MIN direction of graph: \downarrow $y=-(1)^{2}+2(1)+3$ $y=-1+2+3$
range: $(-\infty, 4]$ or $y \leqslant 4 \quad y=4$ y-intercept $(0,3)$
x-intercept $(-1,0) \&(3,0)$
End Behavior: $\begin{aligned} & \mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow-\infty \\ & \mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow-\infty\end{aligned}$
Increasing interval: $(-\infty, 1]$
Decreasing interval: $[1, \infty)$

2) $y=2 x^{2}+12 x+10$

Axis of Symmetry: $X=-3 \quad x=\frac{-12}{2(2)}=-3$ Vertex: $(-3,-8)$ MAX or MIN $2(2)$ direction of graph: $\uparrow \quad y=2(-3)^{2}+12(-3)$ range: $[-8, \infty)$ or $y \geq-8 \quad y=2(9)+10$ y-intercept $(0,10) \quad y=2(9)-36+10$ x-intercept $(-5,0) \&(-1,0) \quad y=18-36+10$ End Behavior: $\begin{aligned} & x \rightarrow-\infty, y \rightarrow \infty \\ & x \rightarrow \infty, y \rightarrow \infty\end{aligned} \quad y=-8$

Increasing interval: $[-3, \infty)$
Decreasing interval: $(-\infty,-3]$

3) What is the difference between the axis of symmetry and the vertex of a parabola?
\uparrow
imaginary line that divides the graph in half
\uparrow
maximum or minimum point on a parabola
4) What is another name for a solution?
zeRo, x-intercept, root
5) ${ }^{* *}$ A baseball player hits a ball into the air with an initial velocity of 48 feet per second. The batter swings the bat at an initial height of 3 feet. Its height is represented by the equation: $h(t)=-16 t^{2}+v_{o} t+h_{o}$ where t represents the time the ball has traveled in seconds, and h represents the height of the ball in feet. Round any answers to the nearest tenth.
a) Write the vertical motion equation that represents this situation:

$$
h(t)=-16 t^{2}+48 t+3
$$

b) Graph the equation on your calculator and sketch it.

c) After how many seconds does the baseball reach its maximum height?
(1.5sec (x-coord. of vertex)
d) What is the maximum height?

$$
39 \mathrm{ft} \quad(y \text {-coord. of vertex }
$$

e) After how many seconds does the baseball hit the ground? $h(t)=0$

$$
0=-16 t^{2}+48 t+3 \quad \frac{x \text {-intercepts! }}{3.065 e c} \leftarrow 0 \text { us }
$$

6) ** Find the x-intercepts of each quadratic equation by factoring or using the Quadratic Formula.
a) $2 x^{2}-10 x=12$
b) $-8 x-1+4 x^{2}=0$
$2 x^{2}-10 x-12=0$
$4 x^{2}-8 x-1=0$
$2\left(x^{2}-5 x-6\right)=0$
$2(x-6)(x+1)=0$
\downarrow
$x-6=0 \quad x+1=0$
$x=6 \quad x=-1$

$$
\begin{aligned}
& x=\frac{8 \pm \sqrt{(-8)^{2}-4(4)(-1)}}{2(4)} \\
& x=\frac{8 \pm \sqrt{64+16}}{8}=\frac{8 \pm \sqrt{80}}{8}
\end{aligned}
$$

$x \approx 2.12,-.12$
7) Use the discriminant to determine the number of solutions (and their nature) of each quadratic equation below.
a) $x^{2}+3=-4 x$ $x^{2}+4 x+3=0$
b) $2 x^{2}-5 x=-6$
$2 x^{2}-5 x+6=0$
c) $-x^{2}=-2 x+1$
$-x^{2}+2 x-1=0$
$(-5)^{2}-4(2)(6)$
$b^{2}-4 a c$
$(4)^{2}-4(1)(3)$
25-48
$-23 \Rightarrow \begin{aligned} & 0 \text { real } \\ & \text { solutions }\end{aligned}$
$(2)^{2}-4(-1)(-1)$
4-4
$0 \Rightarrow 1$ real
solution
16-12

$4 \Rightarrow 2 \begin{gathered}\text { rational } \\ \text { solutions }\end{gathered}$

8) Use completing the square to transform the equations in standard form to vertex form. Then graph the quadratic using your knowledge of transformations.
a) $y=\left(x^{2}-2 x\right)-3$
b) $y=x^{2}-12(x+32)$

9) ** Solve using square roots.
a) $-5 x^{2}+500=0$
$\frac{-500-500}{\frac{-5 x^{2}}{-5}=\frac{-500}{-5}}$
$\sqrt{x^{2}}=\sqrt{100} \quad x= \pm 10$
b) $3 x^{2}-75=0$
$+75+75$
$\frac{3 x^{2}}{3}=\frac{75}{3}$
$\sqrt{x^{2}}=\sqrt{25}$
$x= \pm 5$
c) $-2 x^{2}+48=0$
$\begin{aligned}-48 & -48 \\ \frac{-2 x^{2}}{-2} & =\frac{-48}{-2} \\ \sqrt{x^{2}} & =\sqrt{24}\end{aligned}$
10) If $f(x)=(x-5)^{2}+1$, graph $h(x)=-2 f(x)$ on
11) If $f(x)=(x-2)^{2}-3$, graph $h(x)=f(x)+6$ on the same coordinate plane.
right 2 , down 3

the same coordinate
right 5 , up

