Unit 8 Day 12 Notes on Quadratics Formula and Discriminant
Let's solve a few quadratic equations and think about the consequences

$$
\begin{gathered}
x=\frac{-7 \pm \sqrt{85}}{2} \Rightarrow \frac{-7+\sqrt{88}}{2}=1.110 \quad x=\frac{-4 \pm \sqrt{0}}{2}=\frac{-4}{2}=-2 \quad\left|\begin{array}{l}
x^{2}+7 x-9=0(7)^{2}-4(1)(-9)=85 \\
\frac{-7-\sqrt{85}}{2}=-8.110
\end{array}\right| \begin{array}{l}
x^{2}+4 x+4=0(4)^{2}-4(1)(4)=0 \\
2
\end{array} \quad \begin{array}{l}
x^{2}+4 x+6=0(4)^{2}-4(1)(6)=-8 \\
\text { solution }
\end{array}
\end{gathered}
$$

Let's compare the number of solutions:

2 solutions

Why?

$$
\sqrt{\text { positive }}
$$

I Solution
$\sqrt{0}$

No solution
$\sqrt{\text { negative }}$

What mattered was $b^{2}-4 a c$ We call this the
discriminant

Determine the value of the discriminant and state what that means in terms of the number of solutions the equation has

$$
\begin{aligned}
& x^{2}-6 x+9=0 \\
& d=(-6)^{2}-4(1)(9) \\
& d=0
\end{aligned}
$$

1 Solution
Summary:

$$
b^{2}-4 a c=0
$$

* I solution

$$
\begin{aligned}
& x^{2}-6 x-8=0 \\
& d=(-6)^{2}-4(1)(-8) \\
& d=68
\end{aligned}
$$

2 solutions

$$
b^{2}-4 a c>0
$$

* 2 solutions

$$
\begin{aligned}
& x^{2}-6 x+12=0 \\
& d=(-6)^{2}-4(1)(12) \\
& d=-12 \\
& N_{0} \text { solution }
\end{aligned}
$$

$$
b^{2}-4 a c<0
$$

* No solution

One more thing.
If the discriminant is a perfect square: $b^{2}-4 a c=$ perfect square $(1,4,9,16,25,36, \ldots)$
the the solutions will be rational so it would be factorable.

