Unit 8 Day 11 Notes on Quadratic Formula
Think about factoring and solving $x^{2}+4 x-7=0 \ldots$

QUADRATIC FORMULA

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \text { Find this first! }
$$

A method to find the Solutions of a quadratic equation that is in the form $a x^{2}+b x+c=0$.
(0)
(S ing the tune to Pop goes the Weasel)
x equals opposite b
plus or minus the square root of b squared minus 4 ac all over 2 a .

A few to try to together ...

1. $x^{2}+5 x-5=0 \quad a=1, b=5, c=-5$

$$
b^{2}-4 a c=(5)^{2}-4(1)(-5)=45
$$

$$
a=1, b=4, c=-7
$$

Now let's use it to help us solve $x^{2}+4 x-7=0$.

$$
\begin{aligned}
& b^{2}-4 a c=(4)^{2}-4(1)(-7)=44 \\
& x=\frac{-4 \pm \sqrt{44}}{2(1)}, \frac{-4+\sqrt{44}}{2}=\frac{-4-\sqrt{44}}{2}=-5.317
\end{aligned}
$$

A few to try on your own ...
3. $2 x^{2}-2 x-3=0 \quad a=2, b=-2, c=-3$

$$
b^{2}-4 a c=(-2)^{2}-4(2)(-3)=28
$$

$$
x=\frac{2 \pm \sqrt{28}}{2(2)}=\frac{2+\sqrt{28}}{4}=8.823
$$

$$
\begin{aligned}
& x^{2}-6 x+8=0 \\
& \text { 4. } x^{2}+8=6 x \quad a=1, b=-6, c=8 \\
& b^{2}-4 a c=(-b)^{2}-4(1)(8)=4 \\
& x=\frac{6 \pm \sqrt{4}}{2(1)}>\frac{b+2}{2}=
\end{aligned}
$$

$$
\frac{2-\sqrt{28}}{4}=-.823 \quad \frac{6-2}{2}=\{2\}
$$

