Unit 8 Day 10 Notes on Completing the Square
Warm-Up!
Square the binomial.

1. $(x+3)^{2} \quad(x+3)(x+3)$
2. $(x+4)^{2}(x+4)(x+4)$
3. $(x-7)^{2}(x-7)(x-7)$

$$
\frac{x^{2}+3 x+3 x+9}{x^{2}+6 x+9}
$$

$$
\begin{aligned}
& x^{2}+4 x+4 x+16 \\
& x^{2}+8 x+16
\end{aligned}
$$

$$
\frac{x^{2}-7 x-7 x+49}{x^{2}-14 x+49}
$$

Let's look at a pattern here:
1.

$$
\frac{6}{2}=3 \text { AND } 3^{2}=9
$$

2.

$$
\frac{8}{2}=4 \operatorname{AND} 4^{2}=16
$$

3.

$$
\frac{-14}{2}=-7 \mathrm{AND}
$$

Complete the Square.
How can we reverse the procedure? Find the number that "completes the square":

1. $x^{2}+4 x+\underline{4}=(x+\underline{2})^{2}$
2. $x^{2}-16 x+\underline{64}=(x-8)^{2}$

$$
\frac{4}{2}=2 \quad 2^{2}=4
$$

$$
\frac{-16}{2}=-8 \quad(-8)^{2}=64
$$

3. $x^{2}+12 x+\underline{\mathbf{3}}=(x+\underline{\mathbf{6}})^{2}$
4. $x^{2}-22 x+121=(x-11)^{2}$

$$
\frac{12}{2}=6 \quad 6^{2}=36
$$

$$
\frac{-22}{2}=-11 \quad(-11)^{2}=121
$$

Let's Practice!
Find the value of c such that each expression is a perfect-square trinomial. Then write the expression as the square of a binomial.
5. $x^{2}+18 x+c$

$$
\begin{aligned}
& x^{2}+18 x+c \\
& \frac{18}{2}=9,9^{2}=81
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. } q^{2}-4 q+c \\
& -\frac{4}{2}=-2,(-2)^{2}=4
\end{aligned}
$$

$$
\text { 7. } p^{2}-30 p+c
$$

$$
(x+9)^{2}
$$

$$
(q-2)^{2}(p-15)^{2}
$$

Completing the Square
You can change the expression $x^{2}+b x$ into a perfect-square trinomial by adding $\left(\frac{b}{2}\right)^{2}$ to $x^{2}+b x$. BUT! You must keep the expression $\underline{\text { balanced. }}$

Put the Following in Vertex Form. * Completing the square $*$
8.

$$
\begin{aligned}
& \underbrace{x^{2}-16 x+15=y} \\
& \left(x^{2}-16 x+64\right. \\
& \frac{-16}{2}=-8,(-8)^{2}=64
\end{aligned}
$$

$$
y=(x-8)^{2}-49
$$

$$
\begin{aligned}
& \text { 9. } \begin{array}{l}
\left.\begin{array}{l}
x^{2}+6 x-1=y \\
\frac{6}{2}=3, \\
x^{2}=9
\end{array}\right)-1-9
\end{array} \\
& y=(x+3)^{2}-10
\end{aligned}
$$

10.

$$
\begin{aligned}
& \left(x^{2}-2 x+1\right)-7-1 \\
& \frac{-2}{2}=-1,(-1)^{2}=1 \\
& y=(x-1)^{2}-8
\end{aligned}
$$

11. $\underbrace{x^{2}+10 x}+9=y$

$$
\begin{aligned}
& \left(x^{2}+10 x+25\right)+9-25 \\
& \frac{10}{2}=5,5^{2}=25 \\
& y=(x+5)^{2}-16
\end{aligned}
$$

