Unit 8 Day 9 Notes on Solving with Square Roots
Used for only the Special case: $a x^{2}+c=0 \&$ notice no " b " value $(b=0)$

$$
E X: 3 x^{2}-12=0
$$

Determining the number of solutions. Once you solve for $x^{2} \ldots$

$$
\underbrace{\text { if } x^{2}>0}_{2 \text { solutions }} \quad \underbrace{\text { if } x^{2}=0}_{\text {I solution }} \quad \underbrace{\text { if } x^{2}<0}_{\text {no solution }}
$$

Here's why:

Here's our procedure:
(1) Isolate the x^{2}
(2) square root both sides
(3) Don't forget about \pm

Let's Try:

1) $2 x^{2}-32=0$

$$
\begin{aligned}
2 x^{2} & =32 \\
x^{2} & =16 \text { (2 solutions) } \\
x & = \pm 4
\end{aligned}
$$

3) $\sqrt{(x-3)^{2}}=\sqrt{16} \quad(2$ solutions)

$$
x-3= \pm 4
$$

$$
x-3=4 \quad x-3=-4
$$

$$
x=7
$$

2) $x^{2}-8=-8$

$$
\begin{aligned}
& x^{2}=0 \quad(1 \text { solution }) \\
& x=0
\end{aligned}
$$

4) $2 x^{2}+10=32$

$$
\begin{aligned}
2 x^{2} & =22 \\
x^{2} & =11 \quad(2 \text { solutions }) \\
x & = \pm \sqrt{11} \approx \pm 3.32
\end{aligned}
$$

5) Find the formula for the radius of a circle given its area, then use it to find the radius of a circle with area $10 \mathrm{~m}^{2}$.

$$
\left.\begin{array}{cc}
\mathrm{m}^{2} \text { CIRCLE } & A=\pi \cdot r^{2} \\
\text { AREA } & A=r^{2} \\
& r
\end{array}\right) \frac{\sqrt{\frac{A}{\pi}}=r}{\pi}=r^{2}
$$

