Unit 8 Day 9 Notes on Solving with Square Roots

Used for only the Special case: $ax^2 + c = 0$ notice no "b" value (b=0)

Determining the number of solutions. One you solve for χ^2

$$\underbrace{\text{if } x^2 > 0}_{\text{0 colutions}}$$

if
$$x^2 > 0$$
 if $x^2 = 0$ if $x^2 < 0$
2 solutions I solution no solution

if
$$x^2 < D$$

no solution

Here's why:

Here's our procedure:

Let's Try:

1)
$$2x^2 - 32 = 0$$

 $2x^2 = 32$
 $x^2 = 16$ (2 solutions)
 $x = \pm 4$

2)
$$x^{2}-8=-8$$

 $\chi^{2}=0$ (1 Solution)
 $\chi=0$

3)
$$(x-3)^2 = 16$$
 (2 solutions)
 $x-3 = \pm 4$
 $x-3 = 4$
 $x-3 = -4$
 $x=7$

4)
$$2x^{2} + 10 = 32$$

 $2x^{2} = 22$
 $x^{2} = 11$ (2 solutions)
 $x = \pm \sqrt{11} \approx \pm 3.32$

5) Find the formula for the radius of a circle given its area, then use it to find the radius of a circle with area 10 m². CIRCLE A= N·r²

$$\frac{A}{A} = r^2$$