Unit 8 Day 8 Notes on Solving Quadratics by Graphing

Key

Graph the quadratic function: $y = x^2 - 2x - 3$ by identifying the following:

Axis of Symmetry:
$$\chi = \frac{2}{2(1)} = 1$$

$$X=1$$

Vertex:

Circle One: Maximum of Minimum

**Solve the quadratic by factoring: $x^2 - 2x - 3 = 0$

Identify the x-intercept(s): (-1,0)(3,0)

You try!

Graph the following quadratic equation: $y = -x^2 + 2x - 1$ by identifying the following:

Axis of Symmetry:
$$\chi = \frac{-2}{2(-1)} = 1$$

Vertex:

 $y = -(1)^2 + 2(1) - 1$

Circle One Maximum or Minimum

y-intercept:

Identify the x-intercept(s):

(1,0)

**Double-check by factoring! $-x^2 + 2x - 1 = 0$ - $1(x^2 - 2x + 1) = 0$

$$-1(x_8-5x+1)=0$$

What if I want to solve a quadratic equation and the x-intercepts are not rational?

Let's look at $x^2-4x+1=0$. Perhaps our calculator could help us! Take it out ...

Start by graphing $y = x^2-4x+1$ 2 graph (200m 6: Standard)

X=. 268 X=3.732

3 2^{nt} Trace (Calc screen)

1. Solve $x^2 - 5x + 3 = 0$ by graphing.

(3 decimal places please =)

- (4) 2:Zero
- 3 Loff-Bound (go to left and ENTER)
- @ Right Bound (go to right and ENTER)
- The Guess (just press ENTER)
- * (8) Do It all over again for the Other X-intercept

Last one together!

2. Solve $5x^2 - 3x + 1 = 0$ by graphing.

And one on your own ...

3. Solve $x^2 - 6x + 4 = 0$ by graphing.

X=.764, X=5.236

Number of Solutions of a Quadratic Equation

A quadratic equation has ND Solutions

if the graph of its function has 0 x intercepts.

A quadratic equation has

ONE Solution if the graph of its function has x intercept.

A quadratic equation has

TWO Solutions

if the graph of its function has **2** x intercepts.