Unit 8 Day 8 Notes on Solving Quadratics by Graphing
Graph the quadratic function: $y=x^{2}-2 x-3$ by identifying the following:

Identify the x-intercept(s):

$$
(-1,0)(3,0)
$$

You try!
Graph the following quadratic equation: $y=-x^{2}+2 x-1$ by identifying the following:

$$
\begin{aligned}
& \text { Axis of Symmetry: } x=\frac{-2}{2(-1)}=1 \quad x=1 \\
& \text { vexax (} 1,00 \quad \begin{array}{l}
y=\left(V^{2}+2(1)-1\right. \\
y=0
\end{array}
\end{aligned}
$$

Identify the x -intercep ts):
**Double-check by factoring! $-x^{2}+2 x-1=0$

$$
(1,0)
$$

$$
\begin{gathered}
-1\left(x^{2}-2 x+1\right)=0 \\
-1(x-1)(x-1)=0 \\
x \quad \\
x-1=0 \quad x=1
\end{gathered}
$$

What if I want to solve a quadratic equation and the x -intercepts are not rational?
Let's look at $x^{2}-4 x+1=0$. Perhaps our calculator could help us! Take it out ...

Start by graphing $y_{1}=x^{2}-4 x+1$

$$
x=.268 \quad x=3.732
$$

Let's do another!

1. Solve $x^{2}-5 x+3=0$ by graphing.

$$
x=.697 \quad x=4.303
$$

(3 decimal places please i)
(1) put equation into y_{1}
(2) graph (200 m bistandard)
(3) $2^{\text {ne }}$ Trace (Cake screen)
(4) $2:$ zero
(5) Loft -Bound (go to left and ENTER)
(6) Right Bound (go to right and ENTER)
(7) Guess (just press ENTER)
*(8) Do it all over again for the other x-intercept
Last one together!
2. Solve $5 x^{2}-3 x+1=0$ by graphing.
\mathcal{Y} Doesn't cross \neq tho solution

And one on your own ...
3. Solve $x^{2}-6 x+4=0$ by graphing.

$$
x=.764, x=5.236
$$

Number of Solutions of a Quadratic Equation

A quadratic equation has
NO Solutions
if the graph of its function has $\mathbf{0} \times$ intercepts.

A quadratic equation has ONE Solution
if the graph of its function has \qquad x intercept.

A quadratic equation has TWO Solutions
if the graph of its function has $2 \times$ intercepts.

