Unit 8 Day 5 Notes on Quadratics: Standard Form, End Behavior, Increasing and Decreasing KEY
Let's start with a vocab recap:
Name the key components of the Quadratic below:

curve: parabola
M and P : \qquad (to be dealt with later)

N : \qquad

$x=-1$:

How do we find the y-intercept of a quadratic?
Let $x=0$
Find the y-intercept of
a)

$$
\begin{aligned}
& y=2 x^{2}+12 x+3 \\
& y=2(0)^{2}+12(0)+3 \\
& y=3 \quad(0,3)
\end{aligned}
$$

b)

$$
\begin{array}{ll}
\text { 1) } \begin{array}{l}
\left.y=2(x-3)^{2}-2\right)^{2} \\
y=2(0-3)^{2}-2
\end{array} & y=16 \\
y=2(9)-2 & (0,16)
\end{array}
$$

How do we find the vertex of a quadratic if it is not in Vertex Form?

$$
y=a x^{2}+b x+c
$$

For reason we will discuss later the formula is:

$$
\left\{x=-\frac{-x}{2 a}\right.
$$

What about the y-coordinate?
plug in the x coordinate and solvefory
Find the Vertex of $y=2 x^{2}+\underset{b}{12 x}+3$.

$$
\begin{aligned}
& x=\frac{-12}{2(2)}=-3 \quad y=2(-3)^{2}+12(-3)+3 \\
& y=18-36+3=-15
\end{aligned}
$$

$$
\text { vertex: }(-3,-15)
$$

Find the Axis of Symmetry of $y=2 x^{2}+12 x+3$

$$
\text { Vaprex is }(-3,-15) \text { so Axis of sym. is } \begin{aligned}
& x=-3 \\
& \text { (vertical line!) }
\end{aligned}
$$

In summary, if a quadratic is in Standard form:

$$
y=a x^{2}+b x+c
$$

value of a: positive (a>0)
negative $(a<0)$

Opens Up/Down:
Has Max/Min:

$$
\left.\begin{array}{rc}
\text { Def Symmetry: } & x=\frac{-b}{2 a} \\
\text { y-intercept: } & \left(\begin{array}{c}
\\
\end{array}\right.
\end{array}\right\}
$$

Equation of the Axis of Symmetry:

End Behavior:
Describe the end behavior of $y=2 x^{2}-3 x+1 \rightarrow$ OPENS us if
As $x \rightarrow \infty, y \rightarrow \infty$
As $x \rightarrow-\infty, y \rightarrow \infty$

Increasing vs Decreasing
What does increasing mean?
Going from left \rightarrow right, 4 goes up
On what interval is $y=x^{2}-6 x+1$ increasing?

* Find the A.0.5!

$$
x=\frac{-b}{2 a}=\frac{6}{2(1)}=3
$$

What does decreasing mean?
Going from left \rightarrow right, y goes down

Increasing $[3, \infty)$

We've graphed when the quadratic is in vertex form, but what if it is in standard form?
Graph using 5 points (vertex, y-int, symmetric $p t$, random, symmetric $p t$)

$$
y=x^{2}-6 x+1
$$

$$
\begin{aligned}
& \text { y-intercept: }(0,1) \\
& \text { Pt Symmetric: }(6,1)
\end{aligned}
$$

\qquad $a=1$, use the pattern
Pt Symmetric: $-(5,-1)$

You try:
Graph using 5 points

$$
y=x^{2}+4 x-1
$$

$$
x=\frac{-4}{2(1)}=-21
$$

Vertex: \qquad

$$
\begin{aligned}
& 2(1) \\
& y=(-2)^{2}+4(-2)-1 \\
& y=-5
\end{aligned}
$$ $y=-5$

y.interecep: $(0,-1)$
Prisymmeric: $(-4,-1)$

Random pt: $(-1,-4)$
phren

Pt Symmetric: $(-3,-4)$

