Unit 8 Day 4 Notes on Graphing Quadratics - Vertex Form Day 2

What is the vertex form of a quadratic function? $\quad y=a(x-6)^{2}+\frac{1}{2}$ vertex (h, k)

Think back to function notation...

For \#1-4, given a function $h(x)$, what would the following transformations looks like on a graph?

1) $h(x+7)$

2) $\begin{array}{cc}\frac{1}{7} h(x-1) \\ \uparrow \quad \uparrow \\ \text { Vet. Right })\end{array}$

* shrink
by $\frac{1}{7}$

* striction
by 3
Reflection Right 2
over x-axis

Graphing a Quadratic in Vertex Form

5.

b) How does this graph compare to the parent function?
(1) Vert. stretch by 3
(2) Right 1
(3) Dewn 6

c) On the same graph, using the function $\mathrm{f}(\mathrm{x})$ from the example above, graph $g(x)=f(x+5)$.
d) How will this transform the graph of $\mathrm{f}(\mathrm{x})$? LEFT 5
6. a) Graph $\begin{aligned} & f(x)=-(x+4)^{2}-2 \\ & \text { VERTEX }(-4,-2)\end{aligned}$ OPENS DOWN

Now your turn...

For \#7-10 graph g(x).

8. $\begin{aligned} & f(x)=(x+3)^{2}+5 ; \\ & \mathrm{V}:(-3,5)\end{aligned} \frac{g(x)=f(x-4)}{\text { Right }} 4$

9. $\begin{gathered}f(x)=\frac{1}{2}(x-6)^{2}-4 ; \\ \mathrm{V}:(6,-4) \\ \quad k(x)=-f(x) \\ \text { refection } \\ \text { vier } \\ \text { x -ax }\end{gathered}$

