PART I: Describe the transformations (in the correct order) being performed on the quadratic parent function.

- 1. $v = 10x^2 25$

- 1. $y=10x^2-25$ 1. $y=-\frac{1}{6}x+4$ 1. $y=10x^2-25$ 2. $y=-\frac{1}{6}x+4$ 3. $y=(-x)^2+1$ 1. $y=10x^2-25$ 2. $y=-\frac{1}{6}x+4$ 3. $y=(-x)^2+1$ 2. $y=-\frac{1}{6}x+4$ 3. $y=(-x)^2+1$ 3. $y=(-x)^2+1$ 3. $y=(-x)^2+1$ 3. $y=(-x)^2+1$ 4. $y=(-x)^2+1$ 5. $y=(-x)^2+1$ 6. $y=(-x)^2+1$ 6. $y=(-x)^2+1$ 6. $y=(-x)^2+1$ 6. $y=(-x)^2+1$ 7. $y=(-x)^2+1$ 8. $y=(-x)^2+1$ 9. $y=(-x)^2+1$ 10. $y=(-x)^2+1$ 11. $y=(-x)^2+1$ 12. $y=(-x)^2+1$ 13. $y=(-x)^2+1$ 14. $y=(-x)^2+1$ 15. $y=(-x)^2+1$ 16. $y=(-x)^2+1$ 17. $y=(-x)^2+1$ 18. $y=(-x)^2+1$ 19. $y=(-x)^2+1$ 20. $y=(-x)^2+1$ 19. $y=(-x)^2+1$ 19.

PART II: Match the transformed function with its graph.

4.
$$y = -x^2 - 2$$
 b

5.
$$y = -x^2 + 2$$

6.
$$y = -2x^2$$

PART III: Describe the transformations (in the correct order) being performed on the quadratic parent function. Then, graph the function with at least five accurate points.

Orefl. over x-axis 7. $y = -x^2 + 6$

8.
$$y = x^2 - 2$$

9.
$$y = 4(-x)^2 - 10^2$$
 very. Stretch by 4

3 down 10

10.
$$y = -2x^2 + 3$$
 vert stretch by 2

PART IV: Write an equation of a *quadratic function* that has been transformed accordingly.

$$y = \chi^2 - 15$$

12. Reflected over the x-axis, then vertically stretched by a factor of 5

13. Vertically shrunk by a factor of 3, then shifted up 14

$$y = \frac{1}{3}x^2 + 14$$

14. Reflected over the y-axis, vertically shrunk by a factor of 2, then shifted down 10

$$y = \frac{1}{2}(-x)^2 - 10$$

PART V: Write an equation of a quadratic function to match each graph below. *Pay attention to the pattern!*

15.

16.

