What is the zero product property?
If $a \cdot b=0$, then $a=0$ or $b=0$
So.... $(x+1)(x-1)=0$ means that $(x+1)=0$ or $(x-1)=0$

$$
\begin{gathered}
\downarrow \\
x=-1
\end{gathered} \begin{gathered}
\downarrow \\
\end{gathered}
$$

What is it used for?
Solving equations in factored form
When is it used?
When you have an equation that looks similar to $\left(x^{y}\right)=0$

Already in factored form!
Ex 1) $(8 v-7)(v+1)=0$

$$
\begin{array}{rlrl}
8 v-7 & =0 & \text { OR } & v+1=0 \\
8 v & =7 \\
v & =7 & \text { OR } & v=-1
\end{array}
$$

Ex 3) $v^{2}-4 v+4=0$

$$
(v-2)(v-2)=0
$$

same factor!

$$
v-2=0 \quad v=2
$$

You try:

1) $56 m^{2}+288 m+47=7 *$ set equal to 0
$56 m^{2}+288 m+40=0$

$$
\begin{aligned}
& 8\left(7 m^{2}+36 m+5\right)=0 \\
& 8(7 m+1)(m+5)=0 \\
& 7 m+1=0 \quad \begin{array}{l}
m+5=0 \\
7 m=-1 \\
m=-\frac{1}{7} \quad \text { OR } m=-5
\end{array}
\end{aligned}
$$

Factor first!
Ex 2) $a^{2}-3 a-28=0$

$$
\begin{aligned}
& (a-7)(a+4)=0 \\
& a-7=0 \text { OR } a+4=0 \\
& a=7 \text { Or } a=-4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 4) } 10 b^{2}+76 b+96=0 \\
& 2\left(5 b^{2}+38 b+48\right)=0 \\
& 2(5 b+8)(b+6)=0 \\
& 5 b+8=0 \quad b+6=0 \\
& 5 b=-8 \\
& b=-\frac{8}{5} \text { OR } \quad b=-6
\end{aligned}
$$

$$
5 p^{2}-3 p-2=0
$$

$$
(5 p+2)(p-1)=0
$$

$5 p+2=0$ \square
$5 p=-2$

$$
p=\frac{-2}{5}
$$

Reverse! Reverse!
Write a polynomial equation in standard form and integer coefficient that has the following solutions.

1) $x=2, x=\frac{2}{3}$

$$
\begin{aligned}
(x-2)(3 x-2) & =0 \\
3 x^{2}-2 x-6 x+4 & =0 \\
3 x^{2}-8 x+4 & =0
\end{aligned}
$$

2) $x=-\frac{5}{2}, x=0$

$$
\begin{aligned}
& \left(2 x^{2}+5\right)(x)=0 \\
& 2 x^{2}+5 x=0
\end{aligned}
$$

Applications ...

1) The area of a rectangular rug is 84 square feet. The length of the rug is 5 feet more than the width. Find the dimensions of the rug.

$$
\begin{gathered}
l \cdot w=A \\
w(w+5)=84 \\
w^{2}+5=84 \\
w^{2}+5-84=0 \\
(w+12)(w-7)=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { with }=7 \mathrm{ft} \\
& \text { length }=12 \mathrm{ft}
\end{aligned}
$$

2) The area of a rectangular slab of sidewalk is 45 square feet. Its length is 3 feet more than four times its width. Find the length and width of the slab.

$$
\begin{gathered}
w(4 w+3)=45 \\
4 w^{2}+3 w-45=0 \\
(4 w+15)(w-3)=0 \\
w=-\frac{10}{4} \text { OR } w=3
\end{gathered}
$$

$$
\text { width }=3 \mathrm{ft} \text {. }
$$

$$
\text { length }=15 \mathrm{ft} .
$$

