Why are these two examples different? Simplify both.
combine like
a) $\left(3 x^{4}-2 x\right)+\left(2 x^{2}-5 x+3 x^{4}\right)$ terns

$$
-7 x+6 x^{4}+2 x^{2}
$$

a) $6 x^{4}+2 x^{2}-7 x$
distribute first, then
combine like
b) $\left(3 x^{4}-2 x\right)\left(2 x^{2}-5 x+3 x^{4}\right)$ terms

$$
6 x^{6}-15 x^{5}+9 x^{8}-4 x^{3}+10 x^{2}-6 x^{5}
$$

b) $9 x^{8}+6 x^{6}-21 x^{5}-4 x^{3}+10 x^{2}$

Simplify the polynomial. Then, name the polynomial by degree and number of terms.

1) $(2 x-4)(3 x+7)$

$$
6 x^{2}+\underbrace{14 x-12 x-28}
$$

$$
6 x^{2}+2 x-28
$$

quadratic trinomial
3) $(3 x-2)(x+1)+(x-3)$

$$
\begin{gathered}
3 x^{2}+3 x-2 x-2+x-3 \\
3 x^{2}+2 x-5
\end{gathered}
$$

quadratic trinomial
5) What is the difference between Perimeter and Area?

6) What is the formula for the following:
a) Area of a Square $=\boldsymbol{S} \cdot \boldsymbol{S}$
b) Area of a Rectangle $=1 \cdot \boldsymbol{W}$
c) Area of a Triangle $=\frac{1}{2} \cdot b \cdot h$

Applications
Example 1: Write a simplified polynomial that represents the AREA of the shaded region. Note: Diagrams are not drawn to scale.
a)
$w=x+7$

$$
\begin{aligned}
A & =1 \cdot w \\
& =(3 x-2)(x+7) \\
& =3 x^{2}+21 x-2 x-14 \\
& =3 x^{2}+19 x-14
\end{aligned}
$$

Example 2: Write a simplified polynomial for the AREA of the shaded region only
a)

$$
\begin{gathered}
A \text { (whole) }-A \text { (unshaded) } \\
60-10 x^{2} \\
-10 x^{2}+60
\end{gathered}
$$

b)

b)

$$
\begin{aligned}
A & =\frac{1}{2} \cdot 6 \cdot h \\
& =\frac{1}{2}\left(4 x^{2}+3 x+1\right)(6 x) \\
& =\left(2 x^{2}+1.5 x+.5\right)(6 x) \\
& =12 x^{3}+9 x^{2}+3 x
\end{aligned}
$$

Area of the_ Areaof whole - the unshaded

$$
\begin{aligned}
& \text { A(whole) }-A \text { (unshaded) } \\
& (2 x+6)(2 x+6)-\frac{1}{2}(x)(2 x+6) \\
& 4 x^{2}+24 x+36-x^{2}-3 x \\
& 3 x^{2}+21 x+36
\end{aligned}
$$

