## Unit 6 Day 11 Notes on Exponential Functions (Growth and Decay)

Write the equation of the exponential function based on the following tables:

| x | -1 | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | 4 | 12 | 36 | 108 | 324 |
| $\times 3 \times 3$ |  |  |  |  |  |



Applications of Growth and Decay

| Growth/Decay Model |
| :---: | :---: |
| $\mathrm{y}=\mathrm{a}(1 \pm \mathrm{r})^{\mathrm{t}}$ |
| Amount at time, $t=$ initial amount $(1 \pm$ rate $){ }^{\text {time }}$ |
| $\substack{\text { "rate" as } \\ \text { "." for growth } \\ \text { atecimal } \\ \text { anderease }}$ |

## Ex 1 - Compound Interest

You deposit \$500 in an account that pays 8\% annual interest compounded yearly.
a) Is this growth or decay?

## Growth

b) Write the equation to model this.

$$
y=500(1+.08)^{t}
$$

c) How much will be in the account after 6 years?

$$
\begin{gathered}
y=500(1.08)^{6} \\
\$ 793.44
\end{gathered}
$$

d) How much will be in the account after 35 years?

$$
\begin{gathered}
y=500(1.08)^{35} \\
\$ 7,392.67
\end{gathered}
$$

## Ex 2 - Cell Phone Value

You purchase a cell phone for $\$ 125$. The value of the phone decreases by about $40 \%$ each year.
a) Is this growth or decay?

b) Write the equation to model this

$$
y=125(1-.4)^{t}
$$

c) How much would the phone be worth after 6 years?

$$
y=125(.6)^{6}
$$

d) Would the phone ever be worth $\$ 0$ according to this model?

One computer industry expert reported that there were about 600 million computers in use worldwide in 2001 and that the number was increasing at an annual rate of $10 \%$.
a) Write a function that models the number of computers in use over time.

$$
\begin{aligned}
& t=\# \text { of years } \\
& \text { since } 2001
\end{aligned}
$$

$$
y=600,000,000(1+.1)^{t}
$$

b) Predict the number of computers that would have been in use in 2015. $t=14$

$$
\begin{aligned}
y & =600,000,000(1.1)^{14} \\
& =2,278,499,001 \text { computers! }
\end{aligned}
$$

c) Do you think this is accurate?

The answer is probably a high estimate - it wouldrit continue growing exponentially forever

Ex 4 - Home Purchase
You have inherited land that was purchased for $\$ 30,000$ in 1960. The value of the land increased approximately $5 \%$ per year.

$$
r=.05
$$

a) Write a function that models the value of the land over time. $t=\#$ of years since 1960

$$
y=30,000(1+.05)^{t}
$$

b) Predict the value of the land in 2017. $t=57$ years

$$
\begin{array}{r}
y=30,000(1.05)^{57} \\
\$ 484,073.49
\end{array}
$$

Growth or Decay?

$$
\begin{array}{cccc}
\begin{array}{c}
\text { Growth or Decay? } \\
y=3(1.9)^{x} \\
G
\end{array} & y=.3(1.9)^{x} & y=5\left(\frac{3}{5}\right)^{x} & y=5\left(\frac{5}{3}\right)^{x}
\end{array} \quad y=5\left(\frac{5}{3}\right)^{-x}=5\left(\frac{3}{5}\right)^{x}
$$

