Unit 6 Day 9 Notes: Exponential Growth

Here's a data table, write an exponential equation to fit this data: $y=a \cdot b$

\mathbf{x}	-1	0	1	2	3	4
\mathbf{y}	$\frac{5}{3}$	$\left(\begin{array}{c}5 \\ 5\end{array}\right.$	15	45	135	405
$\times 3$	$\times 3$	$\times 3$	$\times 3$	6		

Let's try an application:

A population of 10 rabbits is released into a wildlife region. The population triples each year for 5 years. Fill out the table below to figure out how many rabbits there would be after 5 years and answer the questions.

Time (x)	0	1	2	3	4	5
Population (y)	10	30	90	270	810	2430
$\times 3 \times 3 \times 3$						

a) What would the population be after 5 years?

$$
2430 \text { rabbits }
$$

b) Did the rabbit population grow constantly?

$$
\begin{gathered}
\text { No } \rightarrow \text { exponential } \\
\text { growth }
\end{gathered}
$$

c) Write the equation that predicts the population of rabbits based on the number of years that have passed.

$$
y=10 \cdot 3^{x}
$$

 d) Do you think this equation holds true for
any value of x? No, Cant grow forever (predators, hunters, starvation)
e) Draw an appropriate graph.

Compare

- " b " and " $1+r$ " both tell you whether it's decay or growth when you are given triples... a percentage for your rate (\%)
- "x" and " t " are both time

Name the rate of growth (or growth rate) and starting amount.

starting amount

$$
\begin{aligned}
& \text { 1+. } 05 \\
& y=10(1.05)^{t} \\
& \downarrow \stackrel{\downarrow}{ }=.05=5 \% \\
& a=10 \\
& 1+.5 \\
& y=10(1.5)^{t} \\
& \downarrow \stackrel{\downarrow}{ } \quad=.5=50 \% \\
& a=10
\end{aligned}
$$

Another application: $a=10$ $r=.5$
If you start with 10 rabbits and the population grows at a rate of 50% per year (notice this is much slower than the example on the front).
a) Write an equation to model this situation

$$
y=10(1+.5)^{t}
$$

$$
y=10(1.5)^{t}
$$

b) Predict how many rabbits there will be after 5 years. $=t$

$$
\begin{aligned}
y & =10(1.5)^{5} \\
& =76 \text { rabbits }
\end{aligned}
$$

