Unit 6 Day 1	ne Laws of Exponent	s Key		
<u>Warm It Up!</u>				
2 ² = 4 2 ⁴ = 16 F HOLD UP! Do you know the difference?!?!				
$2^{3} = 3/2$ $3^{2} = 9$ $3^{3} = 27$	$x + x = 2 \times$ $x + x + x = 3 \times$	$\begin{array}{c} x \cdot x = \chi^2 \\ x \cdot x \cdot x = \chi^3 \end{array}$		
$3^4 = 81$ $4^3 = 64$	$x + x + x + x + x = 5 \times$	$x \cdot x \cdot x \cdot x \cdot x = X$		
So what is an EXPONENT?? <u>repeated mutipulcation</u>				
a				
TRULE 1:				
Expression to be Simplified	Work it Out!	End Result		
Expression to be Simplified $7^2 \cdot 7^3$	Work it Out! (7 · 7) · (7 · 7 · 7)	End Result 7 ⁵		
RULE1Expression to be Simplified $7^2 \cdot 7^3$ $(-4)^2 \cdot (-4)^3$	Work it Out! $(7 \cdot 7) \cdot (7 \cdot 7 \cdot 7)$ $(-4)(-4) \cdot (-4)(-4)(-4)$	End Result 7^{5} $(-4)^{5}$		
RULE 1: Expression to be Simplified $7^2 \cdot 7^3$ $(-4)^2 \cdot (-4)^3$ $A^2 \cdot A^5$	Work it Out! $(7 \cdot 7) \cdot (7 \cdot 7 \cdot 7)$ $(-4)(-4) \cdot (-4)(-4)(-4)$ $(\alpha \cdot \alpha) \cdot (\alpha \cdot \alpha \cdot \alpha \cdot \alpha \cdot \alpha)$	End Result 7^{5} $(-4)^{5}$ $\cancel{7}^{7}$		
RULE 1: Expression to be Simplified $7^2 \cdot 7^3$ $(-4)^2 \cdot (-4)^3$ $A^2 \cdot A^5$ $(\Delta)^7 \cdot (\Delta)^2$	Work it Out! $(7 \cdot 7) \cdot (7 \cdot 7 \cdot 7)$ $(-4)(-4) \cdot (-4)(-4)(-4)$ $(\cancel{2} \cdot \cancel{2}) \cdot (\cancel{2} \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{2})$ $(\cancel{2} \cdot \cancel{2}) \cdot (\cancel{2} \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{2} \cdot \cancel{2})$ $(\bigtriangleup \cdot \bigtriangleup \cdot \bigtriangleup \cdot \bigtriangleup \cdot \bigtriangleup \cdot \bigtriangleup \cdot \cancel{2}) \cdot (\bigtriangleup \cdot \bigtriangleup)$	End Result 7^{5} $(-4)^{5}$ 4^{7} 4^{9}		

CHECKPOINT! Does this rule work for $5^2 \cdot 4^3$? Explain. No 1 need $5 \neq 4$

RULE

 $\mathbf{x}^{m} \cdot \mathbf{x}^{n}$

Expression to be Simplified	Work it Out!	End Result
$(7^2)^3$	$7^2 \cdot 7^2 \cdot 7^2 = 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7$	7 ⁶
$\left(4^3\right)^4$	$4^{3} \cdot 4^{3} \cdot 4^{3} \cdot 4^{3} = (4 \cdot 4 \cdot 4) \cdot (4 \cdot 4) \cdot (4 \cdot 4 \cdot 4) \cdot (4 \cdot 4 \cdot 4) \cdot (4 \cdot 4) \cdot (4 \cdot 4 \cdot 4) \cdot (4 \cdot 4) \cdot (4$	4) 412
(5 ⁴) ⁵	$5^{4} \cdot 5^{4} \cdot 5^{4} \cdot 5^{4} \cdot 5^{4} = 5 \cdot 5$	5 ²⁰
$(\pi^2)^5$	$\pi^2 \cdot \pi^2 \cdot \pi^2 \cdot \pi^2 \cdot \pi^2 = \pi \cdot \pi$	TU 10
(\$ 3)3	$\$^3 \bullet \$^3 \bullet \$^3 = \$\$\$ \bullet \$\$\$ \bullet \$\$\$$	59
$(\mathbf{x}^m)^n$		RULEX ^{mn}

CHECKPOINT! Does this rule for $(3^2)^5$? Explain. If so, what do you get as the end result? 3^{10}

Expression to be Simplified	Work it Out!	End Result
(7ab) ³	7ab·7ab·7ab	7 ³ a ³ b ³
(2·3) ⁴	$(2.3) \cdot (2.3) \cdot (2.3) \cdot (2.3)$	24.34
(4suv) ³	4suv · 4suv · 4suv	4 ³ 5 ³ u ³ v ³
(-5p) ²	(-5p)·(-5p)	$(-5)^2 \rho^2$
(6KW) 4	6kw · 6kw · 6kw · 6kw	$6^4 k^4 W^4$
$(\mathbf{x} \cdot \mathbf{y})^n$		RULEX ⁿ y ⁿ

CHECKPOINT! Does this rule for $(2 \cdot 13)^3$? Explain. If so, what do you get as the end result? $\gamma \ell S = 2^3 \cdot 3^{13}$

