Writing Equations in STANDARD FORM
STANDARD FORM: $A X+B Y=C \not \subset$ NO FRACTIONS ψ
To write an equation in STANDARD FORM, first write the equation in:

1. Slope-intercept
2. pint - slope
2) Then, manipulate your equation so that the variables are on the \qquad SAME SIDE
3) Eliminate any fractions. The \qquad Coefficients must be \qquad integers (positive or negative Whole \#5) $A x+B y=c$
1. Write an equation in standard form for a line that passes through the points:
a. $(4,-2)$ and $(7,4)$
b. $(3,7)$ and $(5,-15)$

$$
m=\frac{4--2}{7-4}=\frac{6}{3}=2
$$

$$
m=\frac{-15-7}{5-3}=\frac{-22}{2}=-11
$$

slope-intercept \rightarrow standard

$$
\begin{aligned}
y & =m x+b \\
4 & =2(7)+b \\
4 & =14+b \\
-10 & =b
\end{aligned}
$$

$$
y-7=-11(x-3)
$$

*
ppint-slope \rightarrow standard

$$
\begin{aligned}
& y-7=-11 x+33 \\
& +11 x+11 x
\end{aligned}
$$

$$
11 x+y-7=\begin{array}{r}
33 \\
+7
\end{array}
$$

2. Using either method, write an equation in standard form for a line that passes through the following points.
$x_{1} y_{1}$
$\begin{array}{ll}x_{1} & y_{1}\end{array}$
a. $(-2,5)$ and $(7,-2)$
b. $(9,-2)$ and $(6,-10)$

$$
x_{1} y_{1}
$$

$$
\begin{aligned}
& m=\frac{-2-5}{7--2}=\frac{-7}{9} \\
& {\left[y-5=-\frac{71}{9}(x+2)\right] \cdot 9} \\
& 9 y-45=-7(x+2) \\
& 9 y-45=-7 x-14 \\
& +7 x+45=+4 x+45 \\
& 7 x+9 y=31
\end{aligned}
$$

$$
\begin{aligned}
& m=\frac{-10--2}{6-9}=\frac{-8}{-3}=\frac{8}{3} \\
& {\left[y+2=\frac{8}{3}(x-9)\right] \cdot 3}
\end{aligned}
$$

c. $(-4,2)$ and $(3,-1)$

$$
3 y+6=8(x-9)
$$

$$
\begin{aligned}
& m=\frac{-1-2}{3-4}=\frac{-3}{7} \\
& {\left[y+1=-\frac{3}{7}(x-3)\right] \cdot 7} \\
& 7 y+7=-3(x-3) \\
& 7 y+7=-3 x+9 \\
& 3 x+7 y=2
\end{aligned}
$$

$$
y=m x+b
$$

Convert the standard form equations to slope-intercept form.
a. $2 x-4 y=8$
b. $-12 x+24 y=-48$

$$
\begin{array}{r}
-\frac{4 y}{-4}=\frac{-2 x}{-4}+\frac{8}{-4} \\
y=\frac{1}{2} x-2
\end{array}
$$

$$
\frac{24 y}{24}=\frac{12 x}{24}-\frac{48}{24}
$$

$$
\leftarrow \text { SAME }!\rightarrow
$$

$$
y=\frac{1}{2} x-2
$$

Reflect! What did you observe between the two equations? How were they originally similar (in standard form)? Different?

Can multiply the first equation by -6 and it becomes the second equation!

BIG IDEA: To write an equivalent equation, you must keep your equation BALANCED
a. Write at least two equations in standard form that are equivalent to $2 x-6 y=4$.

$$
\frac{\text { divide by } 2}{x-3 y=2} \quad \frac{\text { multiply by } 2}{4 x-12 y=8} \text {, etc. }
$$

b. Write at least two equations in standard form that are equivalent to $3 x+9 y=-27$.

$$
\frac{\text { multiply by }-1}{-3 x-9 y=27} \quad \frac{\text { multiph by } 100}{300 x+900 y=-2700} \text {, etc. }
$$

3. Write an equation in standard form from the graph.
a.

A Few Applications.

4. Keri has $\$ 19.95$ in quarters and dimes after a bake sale for Peer Buddies. Write an equation in standard form to model the number of quarters and dimes that Keri has collected. Define your variables.

$$
\begin{aligned}
& x=\# \text { of quarters } \\
& y=\# \text { of dimes }
\end{aligned}
$$

If Keri has 27 quarters, how many dimes does she have?

$$
\begin{aligned}
x=27 \quad .25(27)+.10 y & =19.95 \\
6.75+.10 y & =19.95 \\
.10 y & =13.20
\end{aligned}
$$

5. The Chicago Bulls scored a total of 80 points in a basketball game against the Pacers. Write an equation in standard form to model the number of 3-pointers compared to two-point baskets in the game. Define your variables.

$$
\begin{aligned}
& x=2 \text {-pointers } \\
& y=3 \text {-pointers }
\end{aligned}
$$

If the Bulls scored six 3-pointers, how many two-point baskets must they have made?

$$
\begin{aligned}
2 x+3(6) & =80 \\
2 x & =62 \\
x & =312 \text {-pointers }
\end{aligned}
$$

6. During a HC lacrosse game, parents sell popcorn and hot pretzels with cheese to raise money for new equipment. They charge $\$ 1.50$ for a bag of popcorn and $\$ 3$ for a soft pretzel with cheese. The parents collect $\$ 180$. Write an equation in standard form to represent the amount of money raised from the sale of pretzels and popcorn. Define your variables.

$$
\begin{aligned}
& x=\text { popcom } \\
& y=\text { pretzels }
\end{aligned}
$$

Can you determine how many pretzels and how much popcorn they sold from the given information? Yes? Explain how. No? Explain why.

No, because there would be different combinations of x and y that would work

