Unit 11 Day 9 Notes on Tree Diagrams
a way to display and organize dependent events

Example\# : Teddy goes to the park with his nanny 60% of the time If Teddy goes to the park, there is a 80% chance he'll take an afternoon nap. If Teddy does not go to the park, there is a 50\% chance hell take a nap. What is the probability that Teddy does not take a nap?

$$
\begin{aligned}
& .60 \text { park } \xrightarrow[.20]{.80} \text { nap nap park and no nap OR no pal and no nap } \\
& (.60) \cdot(.20)+(.40) \cdot(.50) \\
& .12+.2 \\
& .32 \text { OR } 32 \%
\end{aligned}
$$

Example \#2: Tina's favorite meal is pasta, followed by ice cream for dessert. Tina's mom cooks pasta once a week. If she cooks pasta, the probability that Tina gets ice cream for dessert is $2 / 3$. If Tina's mom doesn't cook pasta, the probability that she gets ice cream for dessert is $1 / 4$. Create a tree diagram showing all possibilities and determine the probability that Tina gets ice cream for dessert.

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{7} \text { pasta } \frac{\frac{2}{3} \text { yicucream }}{\frac{1}{3}} \mathbf{n} \text { noicecrean }
\end{array} \\
& \text { data and I.C. OR no pans and Ifc. } \\
& \left(\frac{1}{7}\right)\left(\frac{2}{3}\right)+\left(\frac{6}{7}\right)\left(\frac{1}{4}\right) \\
& \frac{6}{7} \geq \underset{\text { not }}{\text { pasta }} \underset{\substack{\frac{1}{4}} \text { ice cream }}{ } \\
& \frac{2}{21}+\frac{6}{28} * \text { uselalulator } \\
& .31 \text { or } 31 \%
\end{aligned}
$$

Example \#3: Coach Sam coaches 60% of the time. If Coach Sam is the coach, then you have a 50% chance of being the goalkeeper. If Coach Alex coaches, you only have a 30\% chance of being the goalkeeper. What is the probability that you will be goalkeeper today?

$$
\begin{aligned}
& \text {.60) Sum } 5 \\
& \text { Sam and gk } O R \text { Alex and gk } \\
& (.60)(.50)+(.40)(.30) \\
& .30+.12 \\
& \text {.40-Alex }{ }^{30} \text { goalkeeper } \\
& 70 \pm \text { not } \\
& .42 O_{R} 42 \%
\end{aligned}
$$

