Unit 11 Day 8 Notes on Mutually Exclusive vs Inclusive
NO OVERLAP/ MUTUALLY

- Find the probability of selecting a diamond OR a heart.

$$
\frac{13}{52}+\frac{13}{52}=\frac{26}{52}=\frac{1}{2}
$$

- Find the probability of selecting a diamond or a King. OVERLAP INCLUSIVE

$$
\frac{13}{52}+\frac{4}{52}-\frac{1}{52}=\frac{16}{52}=\frac{4}{13}
$$

Finding the probability of multiple events that are mutually exclusive:
Means: Two events \qquad cannot occur at the same time.

Examples:

1. Picking a card that is a two $\underline{\boldsymbol{o r}}$ an ace ... in other words, a card can't be both a two and an ace at the same time.
2. Choosing a soda that is diet or regular ... the soda can't be diet and regular at the same time.

If two events, A and B, are mutually exclusive, then the probability that either A or B occurs is found by:

$$
P(A \text { or } B)=P(A)+P(B)
$$

Let's Try It! * always check to make sure it's even possible

1. Peyton has a stack of 8 baseball cards, 5 basketball cards, and 6 soccer cards. If she selects a card at random from the stack, what is the probability that it is a baseball or a soccer card? Mutually exclusive

$$
\frac{8}{19}+\frac{6}{19}=\frac{14}{19}
$$

2. A die is rolled. Find each probability.

3 or 4 or 5 or 6
b. P (at least a 3)

$$
\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{4}{6}=\frac{2}{3}
$$

loo 2 or 3
c. $\mathrm{P}($ less than 4$)$

$$
\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}
$$

3. From a standard deck of cards, what is the probability of a card being a King AND an Ace?

4. From a standard deck of cards, what is the probability of a card being a King $O R$ an Ace?

$$
\frac{4}{52}+\frac{4}{52}=\frac{8}{52}=\frac{2}{13}
$$

Inclusive Events: When two events are not mutually exclusive, they are inclusive.

Examples:

1. Selecting a card from a deck that is either a queen or a diamond ... in other words, the card could be both a queen and a diamond at the same time
2. Selecting a pair of pants that is either striped or made of cotton ... the pants could be striped and made of cotton.

If two events, A and B, are inclusive, then the probability that A or B occurs is:

Try It!

1. What is the probability of drawing a queen OR a diamond from a standard deck of cards? INCLUSIVE

$$
\begin{gathered}
\frac{4}{52}+\frac{13}{52}-\frac{1}{52}=\frac{16}{52}=\frac{4}{13} \\
\text { Queen of } \\
\text { diamonds }
\end{gathered}
$$

2. What is the probability of drawing a queen AND a diamond from a standard deck of cards?

3. 16 people study French, 21 study Spanish and there are 30 students in all. Is this a case of mutually exclusive or inclusive and why? Inclusive - could take both classes Complete the Venn diagram and answer the questions below.
a. How many students studied both? \qquad
b. How many students studied French only? \qquad
c. How many students studied Spanish only? \qquad

$$
9+14
$$

e. How many students studied French only OR Spanish only? 23
\qquad
\qquad
d. How many students studied French AND Spanish?
f. Find the probability that you select a student who students French AND Spanish. $7 / 30$

C
g. Find the probability that you select a student who studies French only OR Spanish only. 23/30

$$
\frac{9}{30}+\frac{14}{30}
$$

Partner Practice!
 "cart happen at the same time"

1. Multiple Choice. Which of the following pairs of events is mutually exclusive?
A) Cards: Ace and Spades
B) Two dice: Odd and Even
C) Sit down and Stand Up
D) Sit down and scratch your nose

NO OVERLAP
2. A card is chosen at random from a pack of 52 playing cards. What is the probability of a King or a Queen?

$$
\frac{4}{52}+\frac{4}{52}=\frac{8}{52}=\frac{2}{13}
$$

overlap
3. A card is chosen at random from a pack of 52 playing cards. What is the probability of a King or a Heart?

$$
\frac{4}{52}+\frac{13}{52}-\frac{1}{52}=\frac{16}{52}=\frac{4}{13}
$$

4. There are 30 children in a class and they all have at least one cat or dog. 14 children have a cat. 19 children have a dog. What is the probability that a child chosen at random from the class has both a cat and a dog?

5. In a group of 25 boys, 20 play ice hockey and 17 play baseball. They all play at least one of the games. What is the probability that a boy chosen at random from the class plays ice hockey but NOT baseball?

6. In a class of 29 children, 15 like history and 21 like math. They all like at least one of the subjects. What is the probability that a child chosen from the class likes math only?

$15-x+x+21-x=29$

$$
\begin{aligned}
-x & =-7 \\
x & =7
\end{aligned}
$$

