DAY 1

All of the previous transformations we have looked at (horizontal and vertical shifts, and reflections) are what are called congruent transformations. Meaning, the size/shape of the figure does not change. Instead, the on ertation of the figure in the plane is the only thing that changes.

Today, we are looking at what are called hon - congruent transformations. Meaning, the size/shape of
the figure does change. the figure does change.

Vertical Stretches and Shrinks:

Recall: All vertical transformations affect the \qquad coordinates. Such as: Shifting up/ down and reflecting over the x-axis. Likewise, they always occur \qquad the function. i.e $x^{2}+2 ;-|x| ; \quad f(x)-4 ;-f(x)$

When a figure gets stretched or shrunk vertically, it means the function is being \qquad by some number. In order to find the new points, we need to the y coordinates by that same number.

\qquad \square
Example: You are given $\mathrm{f}(\mathrm{x})$. Draw the transformation: $3 f(x)$.

New Points:
$(-1,9)$
$(-1,-9)$
$(3,9)$
$(3,-9)$
Which coordinate will be affected? Y What will you do to that coordinate? multiply by 3

Example: You are given $\mathrm{f}(\mathrm{x})$. Draw the transformation: $\frac{1}{2} f(x)$.

Transformation:
Original Points:
$(-5,7)$
$(4,9)$
$(2,-6)$
Which coordinate will be affected? Y
What will you do to that coordinate? multiply by 3

New Points:
$(-5,3.5)$
$(4,4.5)$
$(2,-3)$

Example: You are given $\mathrm{f}(\mathrm{x})$. Draw the transformation: $2 f(x)$.

$\frac{\text { Transformation: }}{\text { Vertical }}$
Stretch

Original Points:
New Points:
$(-4,1)$
$(0,3)$
$(-4,2)$
by 2
$(4,1)$
$(0,6)$
$(-3,-3)$
$(3,-3)$
$(-3,-6)$
$(3,-6)$
Which coordinate will be affected? y
What will you do to that coordinate? multiply by 2

Horizontal Stretches and Shrinks:

Recall: All horizontal transformations affect the \qquad coordinates. Such as: Shift vight/left and reluct over the y-axis \qquad . Likewise, they always occur \qquad the function. i.e $(x+2)^{2} ;|-x| ; \quad f(x-4) ; f(-x)$

When a figure gets stretched or shrunk horizontally, it means the x's are being \qquad by some number. In order to find the new points, we need to \qquad the \square coordinates by the reciprocal of the number.
${ }^{* *}$ Remember - for horizontal transformations, do the opposite of what you think is going to happen!
Example: You are given $\mathrm{f}(\mathrm{x})$. Draw the transformation: $f(3 x)$.

Example: You are given $\mathrm{f}(\mathrm{x})$. Draw the transformation: $f\left(\frac{1}{2} x\right)$.
New Points:

$(-1 / 3,3)$
$(-1 / 3,3)$
$(1,3)$
$(1,-3)$

Which coordinate will be affected? X
What will you do to that coordinate? multiply by $\frac{1}{3}$

Example: You are given $\mathrm{f}(\mathrm{x})$. Draw the transformation: $f(2 x)$.

Transformation:
horizontal shrink $\frac{1}{2}$

Original Points:
$(-4,1)$
$(0,3)$
$(4,1)$
$(-3,-3)$ $(3,-3)$

New Points:

$$
\begin{aligned}
& (-2,1) \\
& (0,3) \\
& (2,1) \\
& (-1.5,-3) \\
& (1.5,-3)
\end{aligned}
$$

What will you do to that coordinate?
multiply by $\frac{1}{2}$

