

<u>DAY 1</u>

All of the previous transformations we have looked at (horizontal and vertical shifts, and reflections) are what are called <u>CONGNENT</u> transformations. Meaning, the size/shape of the figure <u>does</u> <u>not</u> change. Instead, the <u>Orientation</u> of the figure in the plane is the only thing that changes.

Today, we are looking at what are called $\frac{\text{Non}}{\text{congruent}}$ transformations. Meaning, the size/shape of the figure $\underline{\text{does}}$ change.

Vertical Stretches and Shrinks:

When a figure gets stretched or shrunk vertically, it means the function is being ______ by some number. In order to find the new points, we need to $\underline{\text{multiply}}$ the $\underline{\text{multiply}}$ the $\underline{\text{multiply}}$ coordinates by that same number.

Example: You are given f(x). Draw the transformation: 3f(x).

<u>Example:</u> You are given f(x). Draw the transformation: $\frac{1}{2}f(x)$.

Which coordinate will be affected?

What will you do to that coordinate? multiply by 3

 $\frac{\text{Original Points:}}{(-5,7)}$ (-4,9)

121-6)

(-5, 3,5 (4,4,5 (2,-3) **Example:** You are given f(x). Draw the transformation: 2f(x).

Horizontal Stretches and Shrinks:

Recall: All horizontal transformations affect the $X_{\text{coordinates. Such as: Shift vight/left}}$. <u>vifict our ful y-axis</u>. Likewise, they always occur <u>inside</u> t and function. i.e $(x+2)^2$; |-x|; f(x-4); f(-x)

When a figure gets stretched or shrunk horizontally, it means the x's are being _____ by some number. In order to find the new points, we need to \underline{wuhpy} the X coordinates by the _____ of the number.

**Remember – for horizontal transformations, do the *opposite* of what you think is going to happen!

Example: You are given f(x). Draw the transformation: f(3x).

Which coordinate will be affected? X

What will you do to that coordinate? Multiply by 2

Example: You are given f(x). Draw the transformation: f(2x).

