Name \qquad (2)

Part I: Describe the transformations that each equation underwent assuming the original function is either $y=x^{2}$ or $y=|x|$.

1) $y=x^{2}-7$
2) $y=|x-7|$
3) $y=(x+7)^{2}$
4) $y=|x|+7$
left 7
up 7
5) $y=(x+6)^{2}-11$
right?
6) $y=|x+3|+13$
$1 e f+3$
up 13
7) $y=|x-3|-7$

Part II: Write an equation for each graph described below.

1) Shift the graph of $y=x^{2}$ right 3 units

$$
y=(x-3)^{2}
$$

3) Shift the graph of $y=|x|$ left 9 units

$$
y=|x+9|
$$

5) Shift the graph of $y=|x|$ up 12 and right 4

$$
y=|x-4|+12
$$

2) Shift the graph of $y=x^{2}$ down 5 units

$$
y=x^{2}-5
$$

4) Shift the graph of $y=|x|$ up 10 units

$$
y=|x|+10
$$

6) Shift the graph of $y=x^{2}$ down 2 and left 8

Part III: Given is a graph of $y=x^{2}$ or $y=|x|$. Also given is a list of points that lies on the original graph. For each transformed equation, do the following:
a) List the transformations (ie. left 5, up 2, etc)
b) Draw the graph of the new function - plot specific points based on the transformations from part a. An example below has been done for you. **If you shift up/down, change the y-values; If you shift left/right, change the x-values!

1)

2)

3)

4)

Original: $y=x^{2}$

Transformed Equation:

$$
y=(x+1)^{2}
$$ \uparrow

* left 1
* subtract 1 from x

Transformed
Equation:

$$
y=|x|+2
$$

* up 2
$*$ add 2 to y
$a d$
Original: $y=|x|$

Transformed Equation:

$$
y=|x-4|
$$

*right 4 * add' 4 to x

