Semester 2 Review Packet
Unit 6: Exponent Properties
Evaluate the following when $x=-2$

1) x^{2}
$(-2)^{2}$
4

Name: \qquad Key
3) $\left(2 x^{2}\right)^{-4} \quad 2^{-4} \cdot(-2)^{-8}$

$$
\frac{1}{2^{4} \cdot(-2)^{8}}=\frac{1}{16 \cdot 256}=\frac{1}{4096}
$$

Simplify the following expressions using properties of exponents. Answers must contain only positive exponents.
4) $-3 \cdot 3 \cdot x \cdot x \cdot y \cdot y \cdot y$
5) $\left(3 a^{2} c^{3}\right)\left(-7 a^{5} c\right)$

$$
-9 x^{2} y^{3}
$$

$$
-21 a^{7} c^{4}
$$

7) $\left(\underset{\left(5 x^{3}\right)^{2}}{ }\right.$
8) $\left(-2 x^{-4}\right)^{3}$
$5^{2} x^{6}$

$$
(-2)^{3} \cdot x^{-12}=\frac{-8}{x^{12}}
$$

10) $4 c\left(-3 c^{2}\right)^{2}$
11) $\frac{-3}{w^{4}\left(x^{-7}\right)}$
$4 c \cdot(-3)^{2} \cdot c^{4}$

$$
\frac{-3 x^{7}}{w^{4}}
$$

13) $\left(8 x^{2} y\right)^{0}$

$$
\begin{gathered}
14 \frac{7^{-1}-x^{4}}{2(x-3} y \\
\frac{x^{4} \cdot x^{3}}{2 \cdot 7}=\frac{x^{7}}{14}
\end{gathered}
$$

16) $\left(\frac{3}{7}\right)^{-2}=\frac{3^{-2}}{7-2}$
17) $\left(2 a c^{2}\right)^{3}\left(a^{2} c\right)^{0}(a c)^{3}$ $2^{3} a^{3} c^{6} \cdot 1 \cdot a^{3} c^{3}$

$$
\frac{7^{2}}{3^{2}}=\frac{49}{9}
$$

$$
8 a^{6} c^{9}
$$

Identify the following equations as exponential growth or decay.
19) $y=12(.58)^{x}$
20) $A=4.5(2.33)^{w}$
decay
6) $2 a^{4} b^{-8} \cdot 11 b^{3} a^{9}$
$22 a^{13} b^{-5}=\frac{22 a^{13}}{b^{5}}$
9) $6 x^{4} \cdot 5 x^{7}$

$$
30 x^{11}
$$

12) $\frac{-3 a^{4}(b-3}{-24 a a^{2}-8} 2=\frac{-3 a^{4} b^{8}}{-24 a^{8} b^{2}}$

$$
=\frac{b^{6}}{8 a^{4}}
$$

15) $\left(\frac{2 a^{2} c^{-5}}{3 a c^{20}}\right)^{3}$

$$
\left(\frac{2 a}{3 c^{7}}\right)^{3}=\frac{2^{3} a^{3}}{3^{3} c^{21}}=\frac{8 a^{3}}{27 c^{21}}
$$

18) $\frac{3 m^{3} n}{4 m n^{5}} \cdot \frac{4 m^{2} n^{3}}{n}=\frac{12 m^{5} n^{4}}{4 m n^{6}}$

$$
=\frac{3 m^{4}}{n^{2}}
$$

21) $y=\frac{3}{2}\left(\frac{5}{6}\right)^{x}$
decay

Growth Formula: $y=y_{0}(1+r)^{t}$
Decay Formula: $y=y_{0}(1-r)^{t}$
$y=$ Amount at time, t
$y_{0}=$ Initial Amount
$r=$ Growth/Decay rate
22) You deposit $\$ 500$ in a bank account that pays 8% annual interest compounded yearly. What is the account balance after 6 years?

$$
\begin{aligned}
& y=500(1+.08)^{6} \\
& y=7793.44
\end{aligned}
$$

23) You buy a computer for $\$ 3,000$ that depreciates at a rate of 20% per year. Find the value of the computer after 5 years.

$$
\begin{aligned}
& y=3000(1-.20)^{5} \\
& y=\$ 983.04
\end{aligned}
$$

24) The concentration of aspirin in a person's bloodstream decreases by 20% each hour after taking a dose. If a person took 250 mg 6 hours ago, how much aspirin is left in his bloodstream now?

$$
\begin{aligned}
& y=250(1-.20)^{6} \\
& y=65.54 \mathrm{mg}
\end{aligned}
$$

Unit 7: Polynomials and factoring Simplify the following.

$$
\begin{aligned}
& \text { 1) }(2 x+1)(3 x-5) \\
& 6 x^{2}-10 x+3 x-5 \\
& 6 x^{2}-7 x-5
\end{aligned}
$$

$$
6 x^{4}+20 x^{3}-36 x^{2}
$$

4) $(4 x-7)-3(8 x-11)$

$$
\begin{gathered}
4 x-7-24 x+33 \\
-20 x+26
\end{gathered}
$$

6) $(2 a-3)\left(5 a^{2}+10 a-7\right)$
7) $4 x^{2}\left(\frac{3}{2} x^{2}+5 x-9\right)$

$$
\text { 3) } 6 x-(8-3 x)
$$

5)
6) $(7 x-2)^{2}$

$$
\begin{aligned}
& 10 a^{3}+20 a^{2}-14 a-15 a^{2}-30 a+21 \\
& 10 a^{3}+5 a^{2}-44 a+21
\end{aligned}
$$

$$
\begin{gathered}
\left(3 x^{3}-x^{2}+4 x-7\right)-2\left(2 x^{3}-x+8\right) \\
3 x^{3}-x^{2}+4 x-7-4 x^{3}+2 x-16 \\
-x^{3}-x^{2}+6 x-23
\end{gathered}
$$

$$
\begin{aligned}
& (7 x-2)(7 x-2) \\
& 49 x^{2}-14 x-14 x+4 \\
& 49 x^{2}-28 x+4
\end{aligned}
$$

Factor Completely. (Hint: Remember to look for the GCF first)

$$
8(x-3)
$$

$$
\begin{aligned}
& \text { 9) } 10 x^{2} y^{2}-5 x y^{3} \\
& 5 x y^{2}(2 x-y) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { 12) } 2 x^{2}+7 x+6 \\
& (2 x+3)(x+2) \\
& \hline
\end{aligned}
$$

$$
\text { 13) } 4 x^{2}-49
$$

Factor Completely.
14) $100-121 a^{2}$ difference of

$$
(10-11 a)(10+11 a)
$$

$$
\text { 10) } 16 a^{2} b^{3}+32 a^{3} b-8 a b^{4}-8 a b\left(2 a b^{2}+4 a^{2}-b^{3}\right)
$$

13) $4 x^{2}-49$

$$
(2 x+7)(2 x-7)
$$ squares

Unit 8: Solving Polynomials equations and graphing

Solve for \mathbf{x}.

1) $(2 x-7)(x+8)(x-2)=0$
$2 x-7=0 \quad x+8=0 \quad x-2=0$
$x=\frac{7}{2} \quad x=-8 \quad x=2$
2) $2 x^{2}=6 x$
$2 x^{2}-6 x=0$
$2 x(x-3)=0$
$2 x=0 \quad x-3=0$
$x=0 \quad x=3$
3) $13 x^{2}=-3 x^{3}-4 x$
$3 x^{3}+13 x^{2}+4 x=0$
$x\left(3 x^{2}+13 x+4\right)=0$
$x(3 x+1)(x+4)=0$
$x=0 \quad x=\frac{-1}{3} \quad x=-4$

Discriminant!
$b^{2}-4 a c>0 \quad 2$ solutions
$b^{2}-4 a c=0 \quad 1$ solution
$b^{2}-4 a c<0 \quad 0$ solutions
How many solutions does the equation have?
5) $0=2 x^{2}-4 x+2$
6) $10 x^{2}-5 x+1=0$
7) $-15 x^{2}+3 x+5=0$
$a=2, b=-4, c=2$
$a=10, b=-5, c=1$
$d=(-4)^{2}-4(2)(2)=0$
I SOLUTION
$d=(-5)^{2}-4(10)(1)=-15$
NO SOLUTION
$a=-15, b=3, c^{2} 5$
$d=(3)^{2}-4(-15)(5)=309$
2 SOLUTIONS

Solve the equations by using square roots.

8) $8 y^{2}=968$
$y^{2}=121$
$y= \pm 11$
9) $\frac{1}{2} x^{2}-9=-1$
$\frac{1}{2} x^{2}=8$
$x^{2}=16$
$x= \pm 4$
10) $3 x^{2}-17=x^{2}+81$
$2 x^{2}=98$
$x^{2}=49$
$x= \pm 7$
11) $3 x^{2}+18=0$

$$
\begin{aligned}
& 3 x^{2}=-18 \\
& x^{2}=-6 \not \approx \\
& \text { NO SOLUTiON }
\end{aligned}
$$

Provide the required information, and graph the function WITHOUT YOUR CALCULATOR on a separate sheet of graph paper. $x=\frac{2}{2(1)}=1 / y=1-2(1)-3$
12) $y=x^{2}-2 x-3$
a. Opens up or down? up
13) $y=-2 x^{2}-4 x+3$
a. Opens up or down? down $\quad \begin{aligned} & x=\frac{4}{2(-2)}=-1\end{aligned} \begin{aligned} & y=-2(-1)^{2}-4(-1)+3 \\ & y=-2+4+3 \\ & y\end{aligned}$
b. Equation of axis of symmetry? $\quad x=1$
b. Equation of axis symmetry? $x=-1$
c. Vertex? $(1,-4)$
d. y - intercept? $(0,-3)$
c. Vertex? $(-1,5)$
e. Zeros $(x-$ Intercept $) ?(x-3)(x+1)=0$

$$
x=3, x=-1
$$

f. Increasing Interval? $x \geqslant 1$ OR $[1, \infty)$
g. Decreasing Interval?
$x \leq 1$ OR $(-\infty, 1]$
d. y - intercept? $(0,3)$
e. Zeros (x-Intercept)? $\begin{gathered}\text { useadratic } \\ \text { quadmula } \\ \text { formula }\end{gathered} x=-2.58, x=.58$
f. Increasing Interval? $x \leq-1$ of $(-\infty,-1]$ g. Decreasing Intervals?

$$
x \geq-1 \text { OR }[-1, \infty)
$$

Complete the square to find the vertex.
14) $y=x^{2}-8 x-2$

$$
y=\left(x^{2}-8 x+\frac{16}{2}\right)-2-16
$$

$$
y=(x-4)^{2}-18
$$

$$
\text { VERTEX }=(4,-18)
$$

$$
\text { 15) } \begin{aligned}
y & =x^{2}+6 x+8 \\
y & =\left(x^{2}+6 x+9\right)+8-9 \\
y & =(x+3)^{2}-1 \\
& \text { VERTEX }=(-3,-1)
\end{aligned}
$$

Use the height formula $h=-16 t^{2}+v_{0} t+h_{0}$ to solve the following problems.
16) A water balloon is dropped from a height of 64 feet. How many seconds will it take to hit the ground?

$$
\begin{aligned}
& 0=-16 t^{2}+0 t+64 \\
& 0=-16 t^{2}+64 \\
& 0=-\left(16 t^{2}-64\right) \text { difference of } \\
& \text { squares }
\end{aligned}
$$

$$
0=-(4 t+8)(4 t-8)
$$

$$
t= \pm 2
$$

$$
t=2 \sec o n d s
$$

17) A rock is thrown upward with an initial velocity of 56 feet per second. It leaves the thrower's hand 5 feet above the ground (you may use your calculator).
a. How high will it go? maximum on

54 ft
b. When will it hit the ground?

$$
\begin{gathered}
0=-16 t^{2}+56 t+5 \\
t=3.59 \mathrm{sec}
\end{gathered}
$$

zero on the calculator

Write the Quadratic Formula here:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solve using the quadratic formula.

$$
\begin{aligned}
& \text { 18) } 2 x^{2}-5 x-3=0 \\
& b^{2}-4 a c=(-5)^{2}-4(2)(-3)=49 \\
& x=\frac{5 \pm \sqrt{49}}{2(2)}=\frac{5 \pm 7}{4} \Rightarrow \frac{5+7}{4}=\frac{12}{4}=3 \\
& \frac{5-7}{4}=\frac{-2}{4}=\frac{-1}{2}
\end{aligned}
$$

$$
\text { 19) }-2 x^{2}+x=-6 \quad-2 x^{2}+x+6=0
$$

$$
\begin{aligned}
& b^{2}-4 a c=(1)^{2}-4(-2)(b)=49 \\
& x=\frac{-1 \pm \sqrt{49}}{2(-2)}=\frac{-1 \pm 7}{-4}, \frac{-1+7}{-4}=\frac{-6}{-4}=\frac{-3}{-4}=\frac{-8}{-4}=2
\end{aligned}
$$

20) Find the x-intercepts of the graph of $y=3 x^{2}+x-4$ without using your calculator.

$$
\begin{aligned}
& y=(3 x+4)(x-1) \\
& 3 x+4=0 \quad x-1=0 \\
& x=\frac{-4}{3} \quad x=1
\end{aligned}
$$

21) We are going to fence in a rectangular field and we know that for some reason we want the field to have an enclosed area of $75 \mathrm{ft}^{2}$. We also know that we want the width of the field to be 10 feet longer than the length of the field. What are the dimensions of the field?

$$
\begin{array}{r}
x+10+15 \\
\begin{array}{r}
x+10)=75 \\
x^{2}+10 x-75=0 \\
(x+15)(x-5)=0 \\
x=-12,5
\end{array}
\end{array}
$$

5 ft by 15 ft

1) $4 \sqrt{49}$
4.7

28
4) $\frac{\sqrt{18}}{\sqrt{8}}=\frac{\sqrt{9}}{\sqrt{4}}=\frac{3}{2}$
7) $2 \sqrt{10}-3 \sqrt{4 \sqrt{10}}+4 \sqrt{5}$

$$
\begin{gathered}
2 \sqrt{10}-6 \sqrt{10}+4 \sqrt{5} \\
-4 \sqrt{10}+4 \sqrt{5}
\end{gathered}
$$

9) $\frac{8}{\sqrt{6}} \cdot \sqrt{6} \cdot \sqrt{6}=\frac{8 \sqrt{6}}{6}=\frac{4 \sqrt{6}}{3}$
10) $4 \sqrt{27}$
$4 \cdot \sqrt{9} \sqrt{3}$

$$
12 \cdot 3 \cdot \sqrt{3}
$$

5) $3 \sqrt{24 x^{3}}$

$$
\begin{aligned}
& 3 \cdot \sqrt{4} \sqrt{6} \sqrt{x^{2}} \sqrt{x} \\
& 3 \cdot 2 \cdot \sqrt{6} \cdot x \cdot \sqrt{x} \\
& 6 x \sqrt{6 x}
\end{aligned}
$$

3) $\sqrt{\frac{99}{49}}$

$$
\frac{\sqrt{99}}{\sqrt{49}}=\frac{\sqrt{9} \sqrt{11}}{7}=\frac{3 \sqrt{11}}{7}
$$

6) $\sqrt{\frac{13}{8}}=\frac{\sqrt{13}}{\sqrt{4 \sqrt{2}}}=\frac{\sqrt{13} \cdot \sqrt{2}}{2 \sqrt{2} \cdot \sqrt{2}}=\frac{\sqrt{26}}{4}$

$$
\begin{aligned}
& \text { 8) }-\sqrt{21}(4-2 \sqrt{3}) \iota^{\sqrt{9 \sqrt{7}}} \\
& -4 \sqrt{21}+2 \sqrt{63} \\
& -4 \sqrt{21}+6 \sqrt{7}
\end{aligned}
$$

10) $(x-2 \sqrt{5})(x-\sqrt{5})$
11) $(2 \sqrt{7}-5)^{2}$

$$
\begin{gathered}
x^{2}-x \sqrt{5}-2 x \sqrt{5}+2 \sqrt{25} \\
x^{2}-3 x \sqrt{5}+10
\end{gathered}
$$

Solve the following radical equations. Check for extraneous solutions.
12) $5-\sqrt{4 x-3}=3$

$$
\begin{aligned}
& \text { the following radical equations. Check tor extraneous solutions. } \\
& \left.\begin{array}{rl}
-\sqrt{4 x-3}=3 \\
-\sqrt{4 x-3}=-2 \\
(\sqrt{4 x-3})^{2}= & (2)^{2} \\
4 x-3 & =4 \\
4 x & =7 \\
4
\end{array} \quad x=\frac{7}{4} \times 5 x\right)^{2} \\
& x^{2}=6-5 x \\
& x^{2}+5 x-6=0 \\
& (x+6)(x-1)=0 \\
& x+2 k+x=1
\end{aligned}
$$

$$
\begin{gathered}
(2 \sqrt{7}-5) \\
4 \sqrt{79}-10 \sqrt{7}-10 \sqrt{7}+25 \\
28-20 \sqrt{7}+25 \\
53-20 \sqrt{7}
\end{gathered}
$$

Unit 10: Stats

1) The temperatures ($\mathrm{in}{ }^{\circ} \mathrm{F}$) recorded at Pleasantville at noon on each day for two weeks were as follows: 81, 78, 77, 75, 82, 84, 78, 63, 71, 88

$$
\begin{aligned}
& I Q R=82-75=7 \\
& 7(1.5)=\underbrace{10.5}
\end{aligned}
$$

$$
\begin{aligned}
& 82+10.5=92.5 \\
& 75-10.5=64.5
\end{aligned} \underbrace{64.5 \rightarrow 92.5} \begin{aligned}
& 63 \text { is AN } \\
& \text { bUTLER }
\end{aligned}
$$

2) The heights of 18 students in a class are listed below. Make a frequency table and a histogram to show the distribution of the heights.

Height	Frequency
$50-55$	1111
$55-60$	-111
$60-65$	1111
$65-70$	1
$70-75$	1111

3) Describe the following distributions:
a.

Skewed Right
b.

symmetric
c.

4) Make a box and whisker plot for the following quiz scores on an Algebra class:

5 Number Summary:

$$
\left[\begin{array}{l}
18,18,30,11,9,18,16,9,8,18,18 \\
9,91,11,13,16,17,18,18,19,201
\end{array}\right.
$$

Minimum	Q1	Median (Q2)	Q3	Maximum
8	9	16	18	20

Box and Whisker Plot:

5) The weight of dogs at doggy day care center were recorded and follow a normal distribution. The mean weight was 55 pounds and the standard deviation was 9 pounds. What percent of dogs are less than 46 pounds?

$$
\begin{array}{r}
.135+.02+.005=\frac{.16}{\text { or }} \\
16 \%
\end{array}
$$

Unit 11: Probability

1) How many ways can you arrange the letters in the word "uncopyrightable"?

$$
\begin{aligned}
15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1= & 1.308 \times 10^{12} \\
& B 1 G \text { NUMBER! }
\end{aligned}
$$

2) There are 25 marbles in a bag. 9 red, 8 blue, and 8 white.
a) If you choose 2 marbles with replacement, what is the probability they are blue and white?

$$
\frac{8}{25} \cdot \frac{8}{25}=\frac{64}{625}
$$

b) If you choose 3 marbles without replacement, what is the probability they are red, red, red?

$$
\frac{9}{25} \cdot \frac{8}{24} \cdot \frac{7}{23}=\frac{504}{13800}=\frac{21}{575}
$$

c) If you choose 1 marble, what is the probability it is red or blue?

$$
\begin{aligned}
& \text { red or blue? } \\
& 9+8
\end{aligned} \frac{17}{25}
$$

3) The numbers 1-30 are written on pieces of paper. If you choose one randomly, what is the probability that you get a number that is less than 10 or a multiple of 5 ?

4) There is a 40% I remember to bring my umbrella on any given day. If I bring my umbrella, there is a 20% chance it will rain. If I forget my umbrella, there is a 75% chance it will rain. What is the probability on any given day that it will be sunny (not rain).

$$
\begin{aligned}
& .40 \text { umbrella } .^{20} \text { rain } \\
& .80 \text { no vain } * \\
& .60 \text { umbrella. } \frac{.55}{} \text { vain } \\
& .25 \text { no vain } \%
\end{aligned}
$$

Various Units: Transformations

Match the equation of the parent function with the corresponding graph
C11) $y=x^{2}$
A
2) $y=2^{x}$
B
3) $y=\sqrt{x}$
D 4) $y=|x|$
A)

B)

C)

D)

5) For the following:
i.) Name the parent function and sketch a little graph of what it looks like.
ii.) Describe the transformations that will occur on that parent function.
iii.) SKETCH a quick graph of what the transformed function will look like.
iv.) State the domain and range
v.) State the end behavior
a. $y=(x+2)^{2}+5$
b. $y=\frac{1}{3}(x-3)^{2}$
c. $y=\sqrt{x-7}+3$
i.) $y=x^{2} \quad$ y
i.) $y=x^{2}$
W
i.) $y=\sqrt{x}$

ii.) Left 2
up 5
ii.) VerA. Shrink by $1 / 3$ Right 3
ii.) Right 7
up 3
iii.)

iii.)

iii.)

iv.) $D: \mathbb{R}$
$R: y \geq 5$ or $[5, \infty)$
iv.) $D: \mathbb{R}$
$R: y \geq 0$ OR $[0, \infty)$
iv.) $D: x \geq 7$ OR $[7, \infty)$ $R: y \geq 3$ OR $[3, \infty)$
v.) as $x \rightarrow \infty, y \rightarrow \infty$ as $x \rightarrow-\infty, y \rightarrow \infty$
v.) as $x \rightarrow \infty, y \rightarrow \infty$
as $x \rightarrow-\infty, y \rightarrow \infty$
v.) as $x \rightarrow \infty 1 y \rightarrow \infty$ as $x \rightarrow-\infty, y \rightarrow \varnothing$

