

DAY 1

To 'reflect' a graph means to draw its
mirror image \qquad across a line of symmetry.

Examples: Draw the reflection of the given figures across the line of symmetry.

There are two ways to that we will reflect graphs on a coordinate plane.

The notation will look like this: $\underline{⿶}_{f(x)}$ negative is out front Other examples: ${ }^{\downarrow} x^{2} ;{ }_{-}^{\downarrow}|x|$; etc.
2) Across the Y axis. This means we will be changing the X values by taking their opposite .
The notation will look like this: $f\left(\downarrow_{x}\right)$ negative is inside the parentheses or bars Other examples: $(-x)^{2} ;|-x|$; etc.

Practice makes perfect ... For each of the following graphs, you have been given $f(x)$. List the transformation that the new equation underwent, the original points, and the new points.

1) $f(x)=x^{2}$

New Equation: $-f(x)=-x^{2}$
Transformation:

- reflection over x
- takcopposite of y

Original Points:
New Points:

$(0,0)$
$(-2,-4)$
$(2,-4)$
$(-3,-9)$
$(3,-9)$
2) $f(x)=|x|$

New Equation: $-f(x)=-|x|$
Transformation:

- reflection over X
- opposite of Y

Original Points:
$(0,0)$
$(-2,2)$
$(-4,4)$
$(2,2) 1$
$(4,4)_{\text {opposite }}$

New Points:
$(0,0)$
$(-2,-2)$
$(-4,-4)$
$(2,-2)$
$(4,-4)$

New Points:
$(5,0)$
$(2,4)$
$(8,8)$

New Points:
$(8,-2)$
$(7,6)$
$(1,1)$
$(1,-5)$

New Points:
$(2,1)$
$(7,-4)$
$(2,-7)$

