Non Calculator
(\#1-19) Simplify the following expressions. Leave no negative exponents.

1) $\quad \frac{\left(9 x^{5} y\right)^{2}}{\left(3 x^{0} y\right)}$

$$
\frac{81 x^{10} y^{2}}{3 y}
$$

$$
27 x^{10} y
$$

2) $\frac{y^{-8}}{y^{8}}$
3) $\frac{3^{-2} w k^{-3}}{(9 w)^{-1}}$

$$
\frac{3^{-2} w k^{-3}}{9^{-1} w^{-1}}
$$

4) $\quad\left(-9 m^{5}\right)^{2} \cdot m^{-3}$ $81 m^{10} \cdot m^{-3}$
5) $\quad\left(\frac{3 k^{0}}{k^{-6}}\right)^{2}$

6) $\begin{aligned} & 4 d^{4} g^{-3} \cdot 2^{-2} \\ & \frac{4 d^{4}}{g^{3}} \cdot \frac{1}{2^{2}}\end{aligned}$
$9 k^{12}$

$$
\begin{equation*}
\frac{4 d^{4}}{4 g^{3}}=\frac{d^{4}}{g^{3}} \tag{1}
\end{equation*}
$$

9) $\quad 3^{-2}\left(\frac{8}{11^{0}}\right)$
$\frac{1}{3^{2}}\left(\frac{8}{1}\right)$
10) $2^{-4} \cdot 2^{1}$ 2^{-3} $\frac{1}{8}$
11) $\frac{6 x^{2}}{x y} \bullet x^{3}$
12) $\quad\left(13 x^{-2} b^{-21}\right)^{0}$
$\frac{8}{9}$
13) $\frac{8 d^{4}}{3 c^{10} d^{-5}}$
14) $\frac{16 x^{7} y^{-4}}{\left(2 x^{-1} y^{-6}\right)^{2}}$
$\frac{8 d^{9}}{3 c^{10}}$

15) $\left(\frac{y^{7}}{3 x}\right)^{2} \cdot \frac{6 y}{x^{-2} y^{3}}$
$\frac{y^{14}}{9 x^{2}} \cdot \frac{6 x^{2}}{y^{2}}$
$\frac{2 y^{12}}{3}$
16) $\frac{16}{4 x^{-3}}$
17) $\frac{\left(4 r^{7} t^{2} r^{-1}\right)^{6}}{r^{3} t^{-7}}$
18) $\frac{1}{12 t^{-4}}$
$\frac{\left(4 r^{6} t^{2}\right)^{6}}{r^{3} t^{-7}}$

$$
\frac{\frac{46 r^{36} t^{12}}{r^{3} t^{-7}}}{46 r^{33} t^{19}}
$$

17) $\left(-2 a^{2} b^{3} c\right)^{3}\left(-2 a^{4} c^{6}\right)^{2}$
$\left(-8 a^{6} b^{9} c^{3}\right)\left(4 a^{8} c^{12}\right)$
$-32 a^{14} b^{9} c^{15}$
18) $3^{-2} \cdot 3^{8} \cdot 3^{-15} \cdot 3^{0}$
19) $\left(4^{8}\right)^{2}$

3^{-9}
$\frac{1}{3^{9}}$

(\#20-21) Graph the following exponential functions and identify the key features described below.
20) $y=4^{x}$

x	-2	-1	0	1	2
y	$1 / 16$	$1 / 4$	1	4	16

21) $y=\left(\frac{1}{2}\right)^{x}$

x	-2	-1	0	1	2
y	4	2	1	$1 / 2$	$1 / 4$

(\#22-27) Determine if the following exponential model is growth or decay.
22) $y=16(1.20)^{x}$
23) $y=12(.80)^{x}$
24) $y=\frac{1}{3} \bullet\left(\frac{7}{2}\right)^{x}$
decay
growth
25) $y=10\left(\frac{5}{4}\right)^{-x}$
26) $y=12\left(\frac{4}{5}\right)^{x}$
27) $y=\left(\frac{2}{7}\right)^{-x}$

$$
\begin{gathered}
y=10(4 / 5)^{x} \\
\text { decay }
\end{gathered}
$$

decay

$$
y=\frac{7}{2} x
$$

(\#28-31) Name the following polynomials by number of terms and degree
28) $x^{2}+2 x$
quadratic binomial
29) x^{3}
cubic monomial
30) $x^{4}+2 x+1$

$$
\begin{gathered}
4^{\text {th }} \text { degree (quartic) } \\
\text { trinomial }
\end{gathered}
$$

31) 3

constant

monomial
(\#32-34) Add, subtract or multiply the following polynomials
32) $\left(x^{3}+2 x^{2}+5 x+1\right)+\left(3 x^{2}-2 x+5\right)$
$x^{3}+2 x^{2}+5 x+\frac{1}{m}+3 x^{2}-2 x+5$
$x^{3}+5 x^{2}+3 x+6$
33) $\left(x^{3}+2 x^{2}+5 x+1\right)-\left(3 x^{2}-2 x+5\right)$

$$
\frac{x^{3}+2 x^{2}+5 x+1}{x^{3}-x^{2}+7 x-4}
$$

34) $\left(2 x^{2}+5 x+1\right)\left(3 x^{2}-2 x+5\right)$

$$
\frac{6 x^{4}-4 x^{3}+10 x^{2}+15 x^{3}-10 x^{2}+25 x+3 x^{2}-2 x+5}{6 x^{4}+11 x^{3}+3 x^{2}+23 x+5}
$$

(\#35-38) Factor the following polynomials completely
35) $3 x^{2}-6 x$
36) $x^{2}+8 x+12$
$3 x(x-2)$
$(x+6)(x+2)$
37) $x^{2}-11 x-26$

$$
(x-13)(x+2)
$$

38) $4 x^{2}-49$
$(2 x+7)(2 x-7)$
(\#39-41) Solve each equation by using the zero product property
39) $(x-3)(x+5)=0$
40) $2 x^{2}-5 x-12=0$
41) $(x-4)(x+2)=-5$

$(2 x+3)(x-4)=0$

$$
\begin{aligned}
& x^{2}+2 x-4 x-8=-5 \\
& x^{2}-2 x-8=-5 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& \downarrow \\
& x-3=0 \quad \downarrow+1=0
\end{aligned}
$$

(\#42-43) Use completing the square to put the following quadratics in Vertex form $x=3 \quad x=-1$
42) $y=\left(x^{2}+6 x\right)+3$
$y=\left(x^{2}+6 x+9\right)+3-9$
$y=(x+3)^{2}-6$
43) $y=\left(x^{2}+8 x\right)+3$
$y=\left(x^{2}+8 x+16\right)+3-16$
$y=(x+4)^{2}-13$
44) Given the graph find the zeros, the axis of symmetry, the vertex, and the y-intercept

$$
\text { Zeros: }(-1,0) \&(3,0)
$$

A.O.S.: $x=1$

Vertex: $(1,-4)$
y-intercept: $(0,-3)$
(\#45-46) Find the vertex of each of the quadratic functions
45) $y=2(x-3)^{2}+5$
$\rightarrow 3 \uparrow 5$
$(3,5)$
46) $y=2 x^{2}-4 x+1$

$$
x=\frac{4}{2(2)}=\frac{4}{4}=1
$$

$$
y=2(1)^{2}-4(1)+1
$$

$$
y=2(1)-4+1
$$

47) How many real zeros (solutions) do the following quadratics have?

$$
y=-1
$$

Number of real Zeros:

$$
\begin{gathered}
\text { no } x \text {-intercepts... } \\
\text { no real } 3 \text { eRos }
\end{gathered}
$$

$$
\begin{gathered}
y=x^{2}-6 x+9 \\
b^{2}-4 a c \\
(-6)^{2}-4(1)(9) \\
36-36 \\
0
\end{gathered}
$$

Number of real Zeros:
1 real zero (vertex)

$$
\begin{aligned}
& y=-(x-3)^{2}-5 \\
& 0=-(x-3)^{2}-5 \\
& +5+5 \\
& \frac{+5}{-1}=\frac{-(x-3)^{2}}{-1} \\
& \sqrt{-5}=\sqrt{(x-3)^{2}} \\
& \varnothing \\
& \text { Number of real Zeros: }
\end{aligned}
$$

No real
zeRo
48) Find the axis of symmetry and the y-intercept of $y=x^{2}+6 x-2$

$$
x=\frac{-b}{2 a}=\frac{-6}{2(1)}=\frac{-6}{2}=-3 \quad \begin{aligned}
& y=(-3)^{2}+6(-3)-2 \\
& y=9-18-2
\end{aligned}
$$

49) Write a polynomial in standard form to represent the area of the entire figure shown (assume Rectangles). There is a path of x feet around a 3 ft by 5 ft garden.

(\#50-53) Identify the transformations that are performed on the following quadratic functions:
$y=(x-3)^{2}+2$
$\rightarrow 3$
$\uparrow 2$
51)

$$
\begin{align*}
& y=7(x+4)^{2} \\
& \text { v. stretch } \\
& \text { bafo } 7 \\
& \leftarrow 4
\end{align*}
$$

52) $y=-(x)^{2}-9$
reflect over x-axis $\downarrow 9$
$y=\frac{1}{3}(-x)^{2}$
V. Shrink
bafo 3
reflect over y-axis
53) Given the graph to the right, identify the following:

Domain: $(-\infty, \infty)$
Range: $y \leqslant 0$ or $(-\infty, 0]$

$$
\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow-\infty
$$

End Behavior:

$$
x \rightarrow \infty, y \rightarrow-\infty
$$

Increasing interval: $(-\infty, 3]$
Decreasing interval: $[3, \infty)$

Calculator OK

$$
y=a(1 \pm r)^{t}
$$

55) You deposit $\$ 500$ in a bank account that pays 8% annual interest compounded yearly. What is the account balance after 6 years?

$$
\begin{gathered}
y=500(1+.08)^{6} \\
\$ 793.44
\end{gathered}
$$

56) You buy a computer for $\$ 3,000$ that depreciates at a rate of 20% per year. Find the value of the computer after 5 years.

$$
y=3000(1-.2)^{5}
$$

57) The concentration of aspirin in a person's bloodstream decreases by 20% each hour after taking a dose. If a person took 250 mg 6 hours ago, how much aspirin is left in his bloodstream now?

$$
y=\frac{250(.8)^{6}}{65.536 \mathrm{mg}}
$$

58) Use the quadratic formula to solve the following quadratic equation: $x^{2}-4 x+2=0$

$$
\begin{array}{ll}
x=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(2)}}{2(1)} \\
x=4 \pm \sqrt{11-a}=4 \pm \sqrt{8} & x \approx 3.41 \\
x \approx 0.59
\end{array}
$$

59) The following equation represents the height of ${ }^{2}$ football (in feet) as a function of how long it has been since it was thrown (in seconds): $h(t)=-16 t^{2}+62 t+6$
a) How high off the ground was it thrown from?

$$
6 \mathrm{ft}
$$

b) What was the highest it went?

$$
66.06 \mathrm{ft} \text { after } 1.94 \mathrm{sec}
$$

c) How long did it stay in the air?
3.97 seconds

