\qquad Date \qquad Hour \qquad
Algebra 2 Trig G
Review for $3^{\text {rd }}$ Quarter Cumulative

CHAPTER 8 REVIEW

1) Find the least common multiple of $8 x^{3} y^{5}$ and $10 x^{4} y$

$$
40 x^{4} y^{5}
$$

2) Simplify completely:

$$
\begin{aligned}
& \frac{x^{2}+2 x-15}{x-3} \frac{(x-3)(x+5)}{x+3} \\
& x+5
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4) Simplify completely: }(x+3) \\
& \frac{4}{x^{2}+4 x+3} \cdot \frac{x^{2}-4 x-21}{x+7} \\
& (x+3)(x+1)
\end{aligned}
$$

6) Simplify completely:

$$
\begin{aligned}
& \frac{a b}{6 a b^{4}} \div \frac{8 a^{3} b}{3 a^{2} b^{6}} 5 \frac{a b}{6 a b^{4}} \cdot \frac{3 a^{2} b^{6}}{8 a^{3} b} \\
& \frac{3 a^{3} b^{7}}{48 a^{4} b^{5}} \frac{b^{2}}{16 a}
\end{aligned}
$$

8) Simplify completely:

$$
\begin{aligned}
& (x+2) \frac{(x+2) \frac{3}{x+5}+\frac{5}{x^{2}+7 x+10}}{(x+5)(x+2)} \\
& \frac{3 x+6}{(x+2)(x+5)}+\frac{5}{(x+2)(x+5)}=\frac{3 x+11}{(x+2)(x+5)}
\end{aligned}
$$

3) Simplify completely:

$$
\begin{aligned}
\frac{2 x+12}{x^{2}+16 x+60} & \frac{2(x+6)}{(x+6)(x+10)} \\
& \frac{2}{x+10}
\end{aligned}
$$

5) Simplify completely:

$$
\begin{aligned}
& \text { 5) Simplify completely: } \\
& \frac{x+5}{x-4} \odot \frac{x^{2}+6 x+5}{x-4} \Leftarrow \frac{1}{x-4} \cdot \frac{x}{x+1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7) Simplify completely: } \\
& \frac{2 x^{3} y^{2}}{5 x y^{3}} \cdot \frac{15 x^{4} y}{16 x^{2} y^{2}} \frac{30 x^{7} y^{3}}{80 x^{3} y^{5}} \\
& \frac{3 x^{4}}{8 y^{2}}
\end{aligned}
$$

9) Simplify completely:

$$
\begin{aligned}
& (x-5) \frac{1}{x-4}-\frac{2}{x^{2}-9 x+20} \\
& (x-4)(x-5) \\
& \frac{x-5-2}{(x-4)(x-5)}=\frac{x-7}{(x-4)(x-5)}
\end{aligned}
$$

CHAPTER 9 REVIEW

1) Exponential Growth or Decay?

$$
y=\frac{1}{2}\left(\frac{3}{2}\right)^{x} \text { Growth }
$$

2) Exponential Growth or Decay?

$$
y=7\left(\frac{1}{4}\right)^{x} \quad \text { Decay }
$$

3) Using a calculator, write the equation of an exponential function that passes through the given points.
$(1,2.4)(3,21.6)(4,64.8)$

$$
y=.8(3)^{x}
$$

4) Using a calculator, write the equation of an exponential function that passes through the given points. $(0,20)(1,5)(2,1.25)$

$$
y=20(.25)^{x}
$$

5) Write the equation in exponential form:
6) Write the equation in logarithmic form:

$$
\log _{1 / 2} 32=-5\left(\frac{1}{2}\right)^{-5}=32
$$

$$
\begin{aligned}
& 2=(8)^{1 / 3} \\
& \log _{8} 2=\frac{1}{3}
\end{aligned}
$$

7) Rewrite $\log 21$ using only $\log 7$ and $\log 3$

$$
\log 7+\log 3
$$

8) Rewrite $\log \frac{3}{7}$ using only $\log 7$ and $\log 3$

$$
\log 3-\log 7
$$

9) Rewrite $\log 49$ using only $\log 7$ and $\log 3$

$$
\log 7^{2}=2 \cdot \log 7
$$

10) Solve for $\mathrm{x}: \log _{4} x+\log _{4} 6=\log _{4} 42$

$$
\begin{aligned}
\log _{4} 6 x & =\log _{4} 42 \\
6 x & =42 \\
x & =7
\end{aligned}
$$

12) Solve for $\mathrm{x}:\left(2 \cdot \log _{5} x=\log _{5} 49\right.$

$$
\begin{aligned}
\log _{5} x^{2} & =\log _{9} 49 \\
x^{2} & =49 \\
x & =7
\end{aligned}
$$

11) $\log _{3} 2+\log _{3} 4+\log _{3} 3=\log _{3} x$

$$
\begin{aligned}
\log _{3} 24 & =\log _{3} x \\
24 & =x
\end{aligned}
$$

13) $\log _{3} x+2 \cdot \log _{3} 3=\log _{3} 54$

$$
\begin{aligned}
\log _{3} 9 x & =\log _{3} 54 \\
9 x & =54 \\
x & =6
\end{aligned}
$$

14) Solve for $\mathrm{x}: ~ \log _{2} 15-\log _{2} x=\log _{2} 5$

$$
\begin{aligned}
& \log _{2} \frac{15}{x}=\log _{2} 5 \\
& \frac{15}{x}=5 x=3
\end{aligned}
$$

16) Solve for $x: \log _{3}(5 x-7)=5$

$$
\begin{aligned}
& 3^{5}=5 x-7 \\
& 243=5 x-7 \quad x=50 \\
& 250=5 x
\end{aligned}
$$

18) Evaluate: $\log _{11} 172$

$$
\frac{\log 172}{\log 11} 2.15
$$

20) Solve for $\mathrm{x}: 5^{2 x-3}=67$

$$
\begin{aligned}
\text { Solve for x: } 5^{2 x-3} & =67 \\
\log 5^{2 x-} & =\log 67 \\
(2 x-3) \cdot \log 5 & =\log 67 \\
2 x-3 & =2.61 \quad x=2.81 \\
2 x & =5.61 \quad x
\end{aligned}
$$

15) Solve for $\mathrm{x}: \log _{5}(10 x+25)=4$

$$
\begin{aligned}
5^{4} & =10 x+25 \\
625 & =10 x+25 \quad x=60 \\
600 & =10 x
\end{aligned}
$$

17) Evaluate: $\log _{6} 325$

$$
\frac{\log 325}{\log 6} \quad 3.23
$$

19) Solve for $\mathrm{x}: 3^{x+2}=31$

$$
\begin{array}{r}
\text { Solve for } x: 3^{3+2}=31 \\
\sqrt{\left.\log 3^{3}+2\right)^{3}}=\log 31 \\
(x+2) \cdot \log 3=\log 31 \\
x+2=3.13 \\
x=1.13
\end{array}
$$

21) You have $\$ 300$ to invest. How long will it take you to earn $\$ 1,200$ if you invest at a rate of 6% interest compounded 6 times a year? Recall: $A=P\left(1+\frac{r}{k}\right)^{k t}$

$$
\begin{aligned}
1200 & =300\left(1+\frac{.06}{6}\right)^{6 t} \\
4 & =(1.01)^{6 t} \\
\log 4 & =6 t \cdot \log 1.01
\end{aligned}
$$

$23.22=t$ years
22) In 1985, the population of Trigtown was 750 people. By 2005 , the population was 6,000 people. What is the rate of growth over this 20 year period?
Recall: $y=a b^{x}$ (Round your "b" value to the nearest hundredth)

23) There are 35 bacteria initially. The number of bacteria doubles every minute. How long will it take to have 86,000 bacteria? Recall: $y=a b^{x}$

$$
\begin{aligned}
86000 & =35(2)^{x} \\
2457.1429 & =2^{x} \\
\log 2457.1429 & =x \cdot \log 2
\end{aligned}
$$

CHAPTER 13 REVEW
Rewrite the radian measure in degrees, and the degree measure in radians.
1)
a) $\frac{7 \pi}{6} \cdot \frac{180}{\pi}=210^{\circ}$
2)
b) $120^{\circ} \cdot \frac{\pi}{180}=\frac{2 \pi}{3}$
c) $\frac{5 \pi}{4} \cdot \frac{180}{\pi}=225^{\circ}$
d) $495^{\circ} \cdot \frac{\pi}{180}=\frac{11 \pi}{4}$

Find the exact value of each. Draw the triangle. (NO DECIMAL ANSWERS)

7) $\cot \left(\frac{-3 \pi}{4}\right)$
$\tan (-135)=1$

8) Find x.

$$
\begin{gathered}
\tan x=\frac{25}{43} \quad \tan ^{-1}\left(\frac{25}{43}\right)=x \\
x=30^{\circ}
\end{gathered}
$$

9) The angle of elevation from a point on the ground 71 feet away from a building to the top of the building is 37°. What is the height of the building? Draw a picture to illustrate the problem.

For \#10-11, give the exact value for the given inverse trig functions. (Use your calculator! ©)
10) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) 60^{0}$
11) $\cos ^{-1}\left(\frac{-\sqrt{2}}{2}\right) \leftrightarrows 35^{\circ}$

