Let's Review!

SO CAA TIA
Write the ratio for the following...

$$
\begin{array}{ll}
\tan A=\frac{a}{b} & \cot A=\frac{b}{a} \\
\sin A=\frac{a}{c} & \csc A=\frac{c}{a} \\
\cos A=\frac{b}{c} & \sec A=\frac{c}{b}
\end{array}
$$

Complete the following. SOH CAH TOA

$$
\begin{aligned}
& \sin B=\frac{48}{50}=\frac{24}{25} \quad \csc B=\frac{50}{48}=\frac{25}{24} \\
& \cos B=\frac{14}{50}=\frac{7}{25} \quad \sec B=\frac{50}{14}=\frac{25}{7} \\
& \tan B=\frac{48}{14}=\frac{24}{7} \quad \cot B=\frac{14}{48}=\frac{7}{24}
\end{aligned}
$$

Complete the following.

$$
\begin{aligned}
& \sin A=\frac{10}{26}=\frac{5}{13} \quad \cot A=\frac{24}{10}=\frac{12}{5} \\
& \tan A=\frac{10}{24}=\frac{5}{12} \quad \sec A=\frac{26}{24}=\frac{13}{12} \\
& \cos A=\frac{24}{26}=\frac{12}{13} \quad \csc A=\frac{26}{10}=\frac{13}{5}
\end{aligned}
$$

Set up the proportion to find the missing side.
a)

c)

$\frac{\tan 13}{1}=\frac{12}{x}$
$x(\tan 13)=12$
$x=\frac{12}{\tan 13}$

$$
x=51.98
$$

Now that we can find missing sides, how do you find an ANGLE?

d)

$$
\begin{aligned}
& \frac{\cos 35}{1}=\frac{x}{15} \\
& 15(\cos 35)=x \\
& 12.29=x
\end{aligned}
$$

\qquad
a)

$$
\begin{aligned}
& \sin x=\frac{12}{44} \\
& \sin ^{-1}\left(\frac{12}{44}\right)=x
\end{aligned}
$$

c)

$\tan x=\frac{8}{26}$
$\tan ^{-1}\left(\frac{8}{26}\right)=x$

$$
17^{\circ} \div x
$$

Word Problems!
a) The new ski slope at Devil's Head is 750 ft high. From the ranger's station the slope is at an angle of elevation of 24°. How long is the ski run?

$$
\begin{gathered}
x(\sin 24)=750 \\
x=184476
\end{gathered}
$$

b)

$\tan ^{-1}\left(\frac{54}{38}\right)=x$

$$
55^{0-x}
$$

d)

$$
\begin{gathered}
\cos x=\frac{16}{21} \\
\cos ^{-1}\left(\frac{16}{21}\right)=x \\
40^{\circ}=x
\end{gathered}
$$

b) Sue was standing 50 feet from a tree flying her kite. If the kite is directly above the tree and 82 feel of string is being used, what is the angle of elevation of the kite?

$$
\begin{aligned}
\cos x & =\frac{50}{82} \\
\cos ^{-1}\left(\frac{50}{82}\right) & =x \\
52^{\circ} & =x
\end{aligned}
$$

