Section 13.1 Day 1
Trigonometry!
Trigonometry is the study of the relationships of sides
For Right Triangle ABC, which side is:

Trig. Definitions
Three basic Trig. Functions: Sine (abbreviated "Sin"), Cosine (abbreviated "Cos"), and Tangent (abbreviated "Tan"). Each function is expressed as a ratio (it's just a fraction).

Sine $=\frac{\text { Opposite }}{\text { Hypotenuse }}$
Cosine $=\frac{\text { Adjacent }}{\text { Hypotenuse }}$

$$
\text { Tangent }=\frac{\text { Opposite }}{\text { Adjacent }}
$$

REMEMBER... "SOL CAM TOX"

$$
\begin{aligned}
& \text { SOH: } \sin =\frac{o p p}{h y p} \\
& \text { CAM: } \cos =\frac{a d j}{h y p} \\
& \text { TOA: } \tan =\frac{o p p}{a d j}
\end{aligned}
$$

Here's how it works...

soH: sine $\angle A=\frac{o p p}{h y p}=\frac{C B}{A B}$
$\mathbf{C A H}: \operatorname{cosine} \angle \mathbf{A}=\frac{a d j}{h y p}=\frac{A C}{A B}$

TOA: tangent $\angle \mathrm{A}=\frac{o p p}{a d j}=\frac{C B}{A C}$

Find the ratios for angle B using the triangle above:
SOH: sine $\angle \mathbf{B}=\frac{o p p}{h y p}=\frac{A C}{A B}$
CAH : coine $\angle \mathbf{B}=\frac{a d j}{h y p}=\frac{C B}{A B}$
TOA: tangent $\angle \mathbf{B}=\frac{o p p}{a d j}=\frac{A C}{C B}$

Find the ratios for angle \mathbf{C} in this triangle:

$$
\begin{aligned}
& \sin \angle C=\frac{A B}{B C} \\
& \cos \angle C=\frac{A C}{B C} \\
& \tan \angle C=\frac{A B}{A C}
\end{aligned}
$$

Just when you think you get it...
There are actually 6 trig functions that you will need to know. The remaining 3 are RECIPROCALS of the first 3. (Reciprocal means flip the fraction over!)

Basic Trig Functions
Sine
Cosine \longrightarrow Secant (abbreviated "sec")
Tangent \longrightarrow Cotangent (abbreviated "cot")

Find the 6 trig functions of $\angle \mathrm{A}$.

$$
\begin{array}{ll}
\sin \angle A=\frac{B C}{A C} & \csc \angle A=\frac{A C}{B C} \\
\cos \angle A=\frac{A B}{A C} & \sec \angle A=\frac{A C}{A B} \\
\tan \angle A=\frac{B C}{A B} & \cot \angle A=\frac{A B}{B C}
\end{array}
$$

For the triangle below, find the 6 trig functions of angle A.
Notice that you are missing one side of the triangle... You must find that side FIRST! You can use the Pythagorean Theorem ($a^{2}+b^{2}=c^{2}$).

$$
24
$$

$$
b 25=c^{2}
$$

$$
25=c
$$

$$
\begin{aligned}
& \sin \angle A=\frac{7}{25} \csc \angle A=\frac{25}{7} \\
& \cos \angle A=\frac{24}{25} \sec \angle A=\frac{25}{24} \\
& \tan \angle A=\frac{7}{24} \cot \angle A=\frac{24}{7}
\end{aligned}
$$

