2.3-2.4 Notes - Equations of Lines Alg 2 Trig G

You can write an equation of a line if you are given:

- o the slope (m) and the y-intercept (b)
- o the <u>slope (m)</u> and the <u>coordinates of a point (x, y)</u> on the line
- o the <u>Coordinates of 2 points</u> on the line

Slope-intercept form:

$$y = mx + b$$

Name the slope and y-intercept of the graph of each equation.

1)
$$y = 6x + 3$$
 $b = 3$

2)
$$y = \frac{4}{3}x - 7$$
 $\begin{bmatrix} m = \frac{4}{3} \\ b = -7 \end{bmatrix}$

$$\neq$$
 3) $y = -8$ havizantal line

$$\Rightarrow$$
 3) $y = -8$
horizontal line $b = -8$

$$\neq$$
 4) $x = 1$ $m = \emptyset$ $b = none$

5)
$$y - 5x = 20$$

 $y = 20 + 5x$

6)
$$-4y - x = -12$$

$$m = \frac{7}{4}$$

$$b = 3$$

5) y - 5x = 20 y = 30 + 5xGraph each equation using the slope and y-intercept $y = 3 - \frac{12}{4x}$

1) $y = -\frac{1}{2}x + 6$

h=6

2)
$$3y + 9 = 3x$$

Write the equation in slope-intercept form of the line that satisfies the given

conditions.

$$y = 3x - 4$$

2)
$$m = \frac{-2}{5}$$
, x-intercept = 6

$$y = mx + b$$

$$0 = \frac{-2}{5}(b) + b$$

$$0 = -2.4 + b$$

$$Y = \frac{2}{5}x + 2.4$$

3)
$$m = 3$$
 and passes through (-4, 6)

$$y = mx + b$$

 $6 = 3(-4) + b$

SLOPE =
$$\frac{\frac{1}{2} - \frac{1}{2}}{\frac{1}{2} - \frac{1}{2}}$$

4) passes through (-3, 3) and (5, -13)

$$m = \frac{-13 - 3}{5 - -3} = \frac{-16}{8} = \frac{47}{8} - 2$$

$$y=mx+b$$

 $3=-2(-3)+b$
 $3=6+b$

* parallel lines have the same slope m=-25) parallel to the graph of y = -2x + 3and passes through (5, 10)

*perpendicular lines slopes are opposite reciprocals (3 -> -5)
6) perpendicular to the graph of
$$y = 4x \rightarrow 4 \text{ and passes through (6, -3)}$$
**Prip m= -1

$$y = -\frac{1}{4}x - 1.5$$