\qquad key \qquad Hour \qquad
2.3-2.4 Notes - Equations of Lines

Alg 2 Trig G

You can write an equation of a line if you are given:the \qquad slope (m) and the \qquad y-intercept (b)
the \qquad slope and the \qquad coordinates of a point (x, y) on the linethe \qquad coordinates of 2 points on the line

Slope-intercept form:

$$
y=m x+b
$$

$$
\begin{aligned}
& m=\text { slope } \\
& b=\text { y-intercept }
\end{aligned}
$$

Name the slope and y-intercept of the graph of each equation.

1) $y=6 x+3$

$$
\begin{array}{|l|}
\hline m=6 \\
\hline
\end{array}
$$

$$
b=3
$$

2) $y=\frac{4}{3} x-7$

$$
\begin{aligned}
& m=\frac{4}{3} \\
& b=-7
\end{aligned}
$$

3) $y=-8$

$$
m=0
$$

$$
b=-8
$$

*4) $x=1$

5) $\begin{aligned} y-5 x \\ +5 x\end{aligned}=20$

$$
m=5
$$

6)

$$
y=20+5 x
$$

$$
b=20
$$

$$
\begin{aligned}
&-4 y-x=-12 \\
&+x \\
&-4 y=\frac{12}{-4}+\frac{1 x}{-4}
\end{aligned}
$$

$$
\begin{aligned}
m & =\frac{-1}{4} \\
b & =3
\end{aligned}
$$

Graph each equation using the slope and y-intercept

$$
y=3-\frac{1}{4} x
$$

1)

2)

$$
\begin{gathered}
3 y+9=3 x \\
\frac{3 y}{3}=\frac{3 x}{3}-\frac{9}{3} \\
y=x-3 \\
m=1=\frac{1}{\text { up }} \\
b=-3
\end{gathered}
$$

Write the equation in slope-intercept form of the line that satisfies the given conditions.

1) $m=3, b=-4$

$$
y=3 x-4
$$

3) $\mathrm{m}=3$ and passes through $\binom{x}{(-4,6}$

$$
\begin{aligned}
y & =m x+b \\
6 & =3(-4)+b \\
6 & =-12+b \\
18 & =b
\end{aligned}
$$

$$
\operatorname{SLOPE}_{(M)}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

4) passes through $(-3,3)$ and $(5,-13) ~$

$$
\begin{array}{ll}
m=\frac{-13-3}{5--3}=\frac{-16}{8}=-2 \\
y & =m x+b \\
3 & =-2(-3)+b \\
3 & =6+b \\
-6 & \\
-3 & =b
\end{array}
$$

* parallel lines have the same slope

5) parallel to the graph of $y=-2 x+7 x$ and passes through $(5,10)$

$$
\begin{aligned}
y & =m x+b \\
10 & =-2(5)+b \\
10 & =-10+b \\
* 20 & =b
\end{aligned}
$$

*perpendicular lines slopes are opposite reciprocals $\left(\frac{3}{5} \rightarrow-\frac{5}{3}\right)$
6) perpendicular to the graph of $y=4 x \rightarrow$ *and passes through $(6,-3)$

$$
\begin{aligned}
y & =m x+b \\
-3 & =\frac{-1}{4}(6)+b \\
-3 & =-1.5+b \\
-1.5 & =b
\end{aligned}
$$

$$
y=-\frac{1}{4} x-1.5
$$

