\qquad
\qquad Hour \qquad
Sequences- Arithmetic \& Geometric
Alg 2 Trig G
Complete the blanks and/or complete the tables in each problem.
1)

Term 1

Term 2

Figure

1
2

2)

3) $\overbrace{-4,-2,0,2}^{+2}$

frith
5) $\overbrace{8,15,22,29}^{+7}, \frac{36,43}{\frac{\text { Arith }}{4}}, 50$

Term 3

$\left.\begin{array}{|c|c|}\hline \text { Figure \# } & \text { Volume } \\ \hline 1 & 1 \\ \hline 2 & 3 \\ \hline 3 & 5 \\ \hline 4 & 7 \\ \hline 5 & 9 \\ \hline\end{array}\right\}$
4) $4,-2,1,-1 / 2,1 / 4$, \qquad 116 Geom

Are all these arithmetic and geometric sequences?? Which ones are arithmetic? Which ones are geometric??
add/ sub multiplication
Formula for an arithmetic sequence:

$$
a_{\underline{n}}=a_{1}+d(\underline{n}-1)
$$

Practice:

$$
a_{1}=1000
$$

7) In August, you open a savings account with $\$ 1,000$. Each month after that, you deposit $\$ 200$. If you never withdraw money, express the money in your savings account. How much money would you have after 11
withdraw money, express the money in your savings account
months?
Find $a_{11} \quad a_{11}=1000+200(11-1)$
withdraw money, express the money in your savings account
months?
Find $a_{11} \quad a_{11}=1000+200(11-1)$

$$
\begin{aligned}
& a_{11}=1000+200(11-1) \\
& a_{11}=\$ 3,000
\end{aligned}
$$

$a_{n}=n^{\text {th }}$ term (ending term)
$a_{1}=1^{\text {st }}$ term
$d=$ repeated addition or subtraction

$$
n=\text { number of term } a_{n}
$$

$$
d=200
$$

$$
a_{1}=6
$$

8) A rumor that Justin Bieber is performing a concert at HC is started by a group of 6 friends at lunch. The rumor spreads and the total number of people who have heard the rumor increases by 35 people every day. Several days later, you find out that 321 people heard the rumor. Exactly how many day sh later was it?
$321=6+35(n-1)$
$a_{n}=321$

$$
d=35
$$

$\frac{315}{35}=\frac{35(n-1)}{3 x}$

9) Consider the sequence: $38,46,54,62, \ldots$ What is a 12 ? What is the $12^{\text {th }}$ term?

$$
\begin{aligned}
& a_{12}=38+8(12-1) \\
& a_{12}=126
\end{aligned}
$$

10) Find the $\underbrace{\text { indicated term }}$ if $a_{1}=-7, d=-3$, and $n=15$. Find the $15^{\text {th }}$ term

$$
\begin{aligned}
& a_{15}=-7-3(15-1) \\
& a_{15}=-49
\end{aligned}
$$

Ok, good. Now.
Use the following sequence to answer the questions below: $30,120,480, \ldots$
Is there a common difference common ratio, neither, or both? \qquad
Find the value if possible: $r=4$

* choose one of the terms and divide by the previous term

Formula for a geometric sequence:

$$
a_{n}=a_{1} \cdot r^{n-1}
$$

$$
a_{1}=1^{\text {st }} \text { term }
$$

$$
\text { * } \begin{aligned}
r & =\text { common ratio }\binom{\text { repeated }}{\text { multiplication }} \\
n & =\text { number of term } a_{n}
\end{aligned}
$$

11. a) What is the formula for this sequence: $30,120,480, \ldots$

$$
a_{n}=30 \cdot 4^{n-1}
$$

b) Find $\mathrm{a}_{6}:=30 \cdot 4^{6-1}=30,720$

Find the
6^{x} term

Let's Practice:
12) Find the formula and the indicated term of each sequence:

$$
\begin{array}{rlrl}
\underbrace{\text { cos ir }}_{r=-3} \mathrm{a} & \mathrm{a}_{1}=5 \quad \mathrm{r}=-3 \mathrm{n}=6 & a_{6} & =5(-3)^{6-1} \\
& =-1215
\end{array}
$$

