\qquad Date \qquad Hour \qquad
Adding Probabilities
Algebra 2 Trig G
If 2 events cannot occur at the same time, they are called \qquad mutually exclusive
Probability of Mutually Exclusive Events:

$$
P(A \text { or } B)=P(A)+P(B)
$$

Example 1: Jenny has a stack of playing cards consisting of 10 hearts, 8 spades, 3 diamonds, and 7 clubs. If she selects a card at random from this stack, what is the probability that it is a heart OR a club?

$$
\begin{aligned}
& P(\text { heart })+P(\text { club }) \\
& \frac{10}{28}+\frac{7}{28}=\frac{17}{28}
\end{aligned}
$$

What is the probability that it is a spade OR a diamond?

$$
\frac{8}{28}+\frac{3}{28}=\frac{11}{28}
$$

What is the probability that it is a spade OR a heart OR a club?

$$
\frac{8}{28}+\frac{10}{28}+\frac{7}{28}=\frac{25}{28}
$$

What is the probability that it is a diamond OR a spade OR a club?

$$
\frac{3}{28}+\frac{8}{28}+\frac{7}{28}=\frac{18}{28}=\frac{9}{14}
$$

What is the probability that it is a spade OR a club OR a diamond OR a heart?

$$
\frac{8}{28}+\frac{7}{28}+\frac{3}{28}+\frac{10}{28}=\frac{28}{28}=\square
$$

Probability of Inclusive Events:

$$
P(A \text { or } B)=P(A)+P(B)-P(\text { both } A \text { and } B)
$$

52 cards $\rightarrow 13$ of each suit
Example 2: Bobby has a standard deck of playing cards. He picks one card out of the deck. What is the probability that it is a spade OR a Queen?

$$
\begin{aligned}
& P(\text { spade })+P(\text { Queen })-P(\text { both spade and Queen }) \\
& \frac{13}{52}+\frac{4}{52}-\frac{16}{52}=\frac{4}{52}
\end{aligned}
$$

What is the probability that it is a 5 or a red card?

$$
\begin{aligned}
& P(5)+P(\text { red })-P(\text { red } 5) \\
& \frac{4}{52}+\frac{26}{52}-\frac{2}{52}=\frac{28}{52}=\frac{7}{13}
\end{aligned}
$$

What is the probability that it is an Ace or a diamond?
$P(A C l)+P($ diamond $)-P(A C l$ diamond)

$$
\begin{aligned}
& A(e)+P(\text { diamond })-P(A C l \text { diamond }) \\
& \frac{4}{52}+\frac{13}{52}-\frac{1}{52}=\frac{4}{13}
\end{aligned}
$$

What is the probability that it is a club or a black card?

$$
\begin{aligned}
& P(\text { club })+P(\text { black })-P(\text { black club }) \\
& \frac{13}{52}+\frac{26}{52}-\frac{13}{52}=\frac{26}{52}=\frac{1}{2}
\end{aligned}
$$

Example 3: There are 200 students taking Calculus, 500 taking Spanish, and 100 taking both. There are 1000 students in the school. What is the probability that a student selected at random is taking Calculus OR
Spanish?

$$
\begin{aligned}
& P(\text { lav })+P(\text { Span })-P(\text { cake }+ \text { span }) \\
& \frac{200}{1000}+\frac{500}{1000}-\frac{100}{1000}=\frac{600}{1000}=\frac{3}{5}
\end{aligned}
$$

