

Alg 2 Trig $G$

Exponential Growth and Decay -

$$
A=P\left(1+\frac{r}{k}\right)^{k t}
$$

$A=$ final amount
$P=$ starting amount
$r=$ rate
$k=\#$ of times per year
$t=$ time

1) Jack invests $\$ 50,000$ in an account that earns $5 \%$ interest compounded two times per year. How long will it take him to have $\$ 180,000$ in his account?

$$
\begin{aligned}
180000 & =50000\left(1+\frac{.05}{2}\right)^{2 \cdot t} \\
3.6 & =(1.025)^{2 t} \\
\log 3.6 & =2 t \cdot \log 1.025
\end{aligned}
$$

$$
t=25.94
$$

2) Jill invests $\$ 100,000$ in an account that earns $6 \%$ interest compounded quarterly. How long will it take her investment to double?

$$
\begin{aligned}
200,000 & =100,000\left(1+\frac{.06}{4}\right)^{4 t} \\
2 & =(1.015)^{4 t} \\
\log 2 & =4 t \cdot \log 1.015 \\
46.5555 & =4 t \\
11.64 \text { year } & =t
\end{aligned}
$$

$y=$ final amount

$$
y=a(b)^{x}
$$

$a=$ starting amount
$b=$ growth or decay rate
$x=$ time
3) A population of bunnies begins with 2 and doubles every year. After how many years will there be 30,000 bunnies?
6) An apple is sitting on the counter and it begins decaying. If the apple weighs 100 grams initially, and after 3 days there are only 60 grams, determine how long it will take for there to be only 5 grams remaining. (remember, you will need to find your " $b$ " value.....)

7) The population of Algebraville is increasing exponentially (because algebra is awesome!). In the year 1995, there were 50,000 people. By 2005, there were 375,000 people. Write a general equation illustrating the population growth of Algebraville.


$$
375,000=50,000(b)^{10}
$$

$$
(7.5)^{\frac{1}{10}}=\left(b^{10}\right)^{\frac{1}{10}}
$$

$$
1.2232=b
$$



Use your equation from \#7 to predict the following:
a) The population in the year 2030.

$$
2030-1995=35
$$

$$
\begin{aligned}
& \text { the following: } \\
& y=50,000(1.2232)^{35}
\end{aligned}
$$

$$
y=57,727,339 \text { people }
$$

b) How many years will it take the population to reach 5,000,000 people?

$$
\begin{aligned}
& 5,000,000=50,000(1.2232)^{x} \\
& 100=(1.2232)^{x} \\
& \log 100=x \log 1.2232 \\
& 22.86=x \\
& \text { yeans }
\end{aligned}
$$

