 Date \qquad Hour \qquad
9.4 -Common Logarithms Alg 2 Trig G -day 2

PRACTICE I
Use a calculator to evaluate the expression to 4 decimal places.

1. $\log 39$

2. $\log (-100)$

3. $\log 0.003$
-2.5229
4. $\log \left(\frac{1}{2}\right)$

- 0.3010

3. $\log 5.8$
0.7634
4. $\log 120$
2.0792
5. Solve the logarithmic equation:

An equation for loudness (L) in decibels is given by $L=10 \bullet \log R$, where R is the sound's relative intensity. An air-raid siren can reach 150 decibels and jet engine noise can reach 120 decibels. How many times greater is the relative intensity of the air-raid siren than that of the jet engine noise?

Air-Raid

$$
\begin{aligned}
& 150=10 \cdot \log R \\
& 15=\log R \\
& 10^{15}=R
\end{aligned}
$$

Jet Engine

$$
\begin{aligned}
& 120=\log \log R \\
& 12=\log R \\
& 10^{12}=R
\end{aligned}
$$

Solve the equation using logs (and your calculator!)
8. $5^{x}=120$

$$
\begin{aligned}
\log 5^{x} & =\log 120 \\
x \cdot \log 5 & =\log 120 \\
x & =\frac{\log 120}{\log 5} \\
x & =2.9746
\end{aligned}
$$

$$
\begin{aligned}
9.6^{x} & =45.6 \\
\log 6^{x} & =\log 45.6 \\
x \cdot \log 6 & =\log 45.6 \\
x & =\frac{\log 45.6}{\log 6} \\
x & =2.1319
\end{aligned}
$$

$$
\log _{a} n=\frac{\log n}{\log a}
$$

Express each in terms of common logs. Then approximate its value to four decimal places.
10. $\log _{12} 200 \frac{\log 200}{\log 12}$
11. $\log _{4} 28.5 \frac{\log 28.5}{\log 4}$
2.1322
2.4164

Solve each equation or inequality.
12. $4^{3 x}=12$

$$
\begin{aligned}
3 x \cdot \log 4 & =\log 12 \\
3 x & =1.7925 \\
x & =.5975
\end{aligned}
$$

13. $5^{4 x-2}=120$

$$
\begin{aligned}
(4 x-2) \cdot \log 5 & =\log 120 \\
4 x-2 & =2.9746 \\
4 x & =4.9746 \\
x & =1.2437
\end{aligned}
$$

14. $6.5^{2 x} \geq 200$

$$
\begin{aligned}
2 x \cdot \log 6.5 & \geq \log 200 \\
2 x & \geq 2.8306 \\
x & \geq 1.4153
\end{aligned}
$$

15. $7^{3 x-1} \geq 21$

$$
\begin{aligned}
(3 x-1) \cdot \log 7 & \geq \log 21 \\
3 x-1 & \geq 1.5646 \\
3 x & \geq 2.5646 \\
x & \geq 0.8549
\end{aligned}
$$

16. $2.4^{x+4}=30$

$$
\begin{aligned}
(x+4) \log 2.4 & =\log 30 \\
x+4 & =3.8850 \\
x & =-0.1150
\end{aligned}
$$

17. $3.6^{4 x-1}=85.4$

$$
\begin{aligned}
17.3 .6^{4 x-1} & =85.4 \\
(4 x-1) \log 3.6 & =\log 85.4 \\
4 x-1 & =3.4720 \\
4 x & =4.4720 \\
x & =1.1180
\end{aligned}
$$

