\qquad Date \qquad Hour \qquad 9.4-Common Logarithms

Alg 2 Trig G - day 1

Logarithms with base 10 are generally called COMMON LOGARITHMS. $\quad y=\log _{10} x$

COMMON LOGS are usually written without the subscript 10.

$$
y=\log _{10} x \quad \text { is equivalent to } y=\log x
$$

Lucky for you, most scientific calculators have a LOG key for evaluating common logs!

Use a calculator to evaluate the expression to 4 decimal places.

1. $\log 14$
2. $\log 0.85$
3. $\log (-10)$

$$
1.1461
$$

$$
-0.0706
$$

4. Solve the logarithmic equation:

The amount of energy (E) in ergs that an earthquake releases is related to its Richter scale magnitude (M) by the equation $\log E=11.8+1.5 M$. In 2011, an earthquake in Japan measured 8.9 on the Richter scale.
How much energy did this earthquake release?

$$
\begin{aligned}
& \log E=11.8+1.5(8.9) \\
& \log _{10} E=25.15 \\
& 10^{25.15}=E \quad E=1.41 \times 10^{25} \text { ergs }
\end{aligned}
$$

Solve the equation using logs (and your calculator!)
5. $5^{x}=62$

$$
\begin{aligned}
\log 5^{x} & =\log 62 \\
x \log 5 & =\log 62 \\
x & =\frac{\log 62}{\log 5} \\
x & =2.5643
\end{aligned}
$$

6. $3^{x}=17$

$$
\begin{gathered}
\log 3 x=\log 17 \\
x \cdot \log 3=\log 17 \\
x=\frac{\log 17}{\log 3} \\
x=2.5789
\end{gathered}
$$

CHANGE OF BASE FORMULA:

$$
\log _{a} n=\frac{\log n}{\log a}
$$

Express each in terms of common logs. Then approximate its value to four decimal places.
7. $\log _{3} 18 \quad \frac{\log 18}{\log 3}$

$$
2.6309
$$

8. $\log _{5} 16$

$$
\begin{aligned}
& \frac{\log 16}{\log 5} \\
& 1.7227
\end{aligned}
$$

Solve each equation or inequality.
9. $6^{x+2}=18$
10. $6.5^{2 x} \geq 200$

$$
\begin{aligned}
(2 x) \log 6.5 & \geq \log 200 \\
2 x & \geq \frac{\log 200}{\log 6.5} \\
2 x & \geq 2.8306 \\
x & \geq 1.4153
\end{aligned}
$$

