

You can use the properties of logarithms to solve equations involving logarithms. Use the properties in reverse to write each side of the equation as a single logarithm.

Solve each equation.

1) $2\log_7 x = \log_7 27 + \log_7 3$ $\log_7 \chi^2 = \log_7 (27.3)$ $\chi^2 = 81$ $\chi = 9$

3)
$$2\log_{4}(x+1) = \log_{4}(11-x)$$

 $\log_{4}(x+1)^{2} = \log_{4}(11-x)$
 $\chi^{2}+2\chi+1 = 11-\chi$
 $\chi^{2}+3\chi-10=0$
 $(\chi+5)(\chi-2)=0$
 $\chi=-5,2$

2)
$$\log_{6} x + \log_{6} (x+5) = 2$$

 $\log_{6} x(x+5) = 2$
 $(3^{2} = x^{3} + 5x)$
 $0 = x^{3} + 5x - 36$
 $0 = (x+9)(x-4)$
 $x = -9, 4$

4)
$$2\log_{2} x - \log_{2} 2 = 3$$

 $\log_{2} x^{2} - \log_{2} 2 = 3$
 $\log_{2} \frac{x^{2}}{2} = 3$
 $2^{3} = \frac{x^{2}}{2}$
 $16 = x^{2}$
 $4 = x$

You try®
5)
$$\log_6(a^2+2) + \log_6 2 = 2$$

 $\log_6(a^2+2) = 2$
 $\log_6(2(a^2+2)) = 2$
 $\log^2 = 2a^2 + 4$
 $32 = 2a^2$
 $1b = a^2$
 $\pm 4 = a$

6)
$$\log_{3} 5 = \log_{3} x + \log_{3} 3$$

 $\log_{3} 5 = \log_{3} (3x)$
 $5 = 3x$
 $\frac{5}{3} = x$