\qquad
\qquad
\qquad
Section 9.1 - Exponential Functions
Alg 2 Trig G Notes

Sketch the graph of $y=4^{x}$. Then state the function's domain and range. GROLTAT

x	\underline{y}
-2	.0625
-1	.25
0	1
1	4
2	16

$$
\left\{\begin{array}{l}
D: \text { all real \#s, } \mathbb{R} \\
R \text { : all positive real \#ns }
\end{array}\right.
$$

has to be in the exponent
Exponential Function $-y=a \cdot b^{x}$ variable in the expo
$y=x^{3}$

Sketch the graph of $y=\left(\frac{1}{2}\right)^{x}$. Then state the function's domain and range. DELAY

x	$\frac{y}{4}$
-2	4
-1	2
0	1
1	.5
2	.25

D : all real \#s, \mathbb{R}
R : all positive val \#s

$$
b>1 \quad b<1 \text { and } b>0
$$

Determine whether each function represents exponential growth or decay.

1) $y=10\left(\frac{4}{3}\right)^{x}$

GROWTH
2) $y=(0.7)^{x}$

DECAY
3) $y=\frac{1}{2}(5)^{x}$

GROWTH
4) $y=2\left(\frac{6}{7}\right)^{x}$ DECAY
5) In 1995, there were an estimated $28,154,000$ cell phone subscribers in the United States. By 2005, this estimated number had risen to 194,633,000. ending starting value
a) Write an exponential function of the form $y=a \bullet$ that could be used to model the number of cell phone subscribers in the US. Write the function in terms of x, the number of years since 1995.

$$
\begin{aligned}
y & =a \cdot b^{x} \\
\frac{194,633,000}{28,154,000} & =\frac{28,154,060 \cdot b^{10}}{24,154,003} \\
(6.913)^{\frac{1}{0}} & =\left(b^{10}\right)^{\frac{1}{10}} \\
1.213^{10} & =b-\text { RATE }
\end{aligned} \quad \begin{aligned}
&
\end{aligned}
$$

b) Estimate the number of US subscribers in 2020. $x=25$ years

$$
\begin{aligned}
& y=28,154,000 \cdot 1.213^{25} \\
& y=3,516,091,173 \text { people }
\end{aligned}
$$

6) Solve each equation: * get a common bose * then set exponents equal
a) $4^{9 n-2}=256$

$$
4^{9 n-2}=4^{4}
$$

$$
9 n-2=4
$$

$$
a_{n}=6
$$

$$
n=\frac{6}{9}=\frac{2}{3}
$$

$$
\text { b) } \begin{aligned}
3^{5 x} & =9^{2 x-1} \\
3^{5 x} & =3^{2(2 x-1)} \\
5 x & =2(2 x-1) \\
5 x & =4 x-2 \\
x & =-2
\end{aligned}
$$

c) $2^{3 x+1}=32$

$$
2^{3 x+1}=2^{5}
$$

$$
3 x+1=5
$$

$$
3 x=4
$$

$$
x=\frac{4}{3}
$$

$$
\text { d) } \begin{aligned}
5^{2 x} & =25^{2 x-1} \\
5^{2 x} & =5^{2(2 x-1)} \\
2 x & =2(2 x-1) \\
2 x & =4 x-2 \\
-2 x & =-2 \\
x & =1
\end{aligned}
$$

