K+W+L

(Know...Want to know...Learned)

	What I KNOW	What I WANT to know	What I LEARNED
	_	(What makes this confusing?)	(and what rule)
$x^2 \bullet x^3$	$\frac{\cancel{X} \cdot \cancel{X} \cdot \cancel{X} \cdot \cancel{X}}{\cancel{X}^2 + 3} = \cancel{\cancel{X}^5}$		when you have the same base and we multiplying, you ADD the exponents
$5x^2 \cdot 2x^3$	[10x5]		,
$\left(\mathbf{x}^{2}\right)^{3}$	$(\chi^2)(\chi^2)(\chi^2) = \chi^b$ $\chi^{2.3} = \chi^b$		twhen you raise a pewer, you MULTPLY we experen
$\left(\frac{2x^{-2}y^{5}}{4x^{3}y^{-2}}\right)^{0}$	(anything) = []		*any expression vaised to the zero pewer equals !
x ⁻⁵	X-5 1 X5		* negexpenents > cross the line, change the sign
$\mathbf{x}^{-5} \bullet \mathbf{x}^{5}$	$X_{-8+2}=X_0=$		V
$\frac{1}{x^{-3}}$	$\frac{1}{\left(\frac{x^{2}}{3}\right)} = \frac{x^{3}}{1} = \left(\frac{x^{3}}{3}\right)$		
$(2x^4)(3x^3y^2)$	6 x ⁷ y ²		

	What I KNOW	What I <u>W</u> ANT to know (What makes this confusing?)	What I <u>L</u> EARNED (and what rule)
$\frac{1}{(2x)(5x^3)}$	[IDX"]		
$\left(x^2y^{-3}z^4\right)^{-1}$	X-2 y 3 Z-4) X ² Z ⁴ X ² Z ⁴		t distribute the expression
$\frac{3x^{3}y^{2}z^{5}}{9x^{2}y^{4}z^{4}}$	$\frac{1 \times 7}{3 y^2} = \frac{x^2}{3 y^2}$		* when you have the same base and are dividing, find out where there are more and how many more
$\frac{(2x^2)^3}{8x^5}$	$\frac{2^3 \times 6}{8 \times 5} = \frac{8 \times 6}{8 \times 5} = \frac{1}{1}$,
12x ² y ³ 4xy ⁵	3x - 3x / y2		

$$\frac{\chi^{2}}{\chi^{2}} = \frac{\chi \cdot \chi \cdot \chi \cdot \chi \cdot \chi}{\chi \cdot \chi} = \chi^{4}$$

$$\frac{\chi^{2}}{\chi^{6}} = \chi^{-4}$$